18 resultados para patch clamp glioblastoma t98g pedot:pss

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of new electroluminescence polymers for specific colour tuning in Polymer Light Emitting Devices (PLEDs) is currently one of the most important fields for organic electronics. This work reports a synthesis of a new electroluminescent polymer and the concomitant test as PLED emissive layer. The polymer, synthesised from fluorene, is poly(9,9`-n-dihexil-2,7-fluorenodiilvinylene-alt-2,5thiophene) or PFT The luminescence shows large bands with maxima around 480 nm in absorption and 560 nm in emission. The device was made in a three layer structure, with PEDOT:PSS as hole transport layer, PFT as emissive layer and butyl-PBD as electron transport layer. The electroluminescence spectrum shows a strong band peaked at 540 nm. For an applied voltage of 12 Volt, the brightness at normal angle of viewing is near 10 cd/m(2) and the luminous efficiency is of 0.01 lm/W. A discussion about carrier transport and the electroluminescence properties is made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing body of evidence indiates that carbon monoxide (CO) acts as a gas neurotransmitter within the central nervous system. Although CO has been shown to affect neurohypophyseal hormone release in response to osmotic stimuli, the precise sources, targets and mechanisms underlying the actions of CO within the magnocellular neurosecretory system remain largely unknown. In the present study, we combined immunohistochemistry and patch-clamp electrophysiology to study the cellular distribution of the CO-synthase enzyme heme oxygenase type 1 (HO-1), as well as the actions of CO on oxytocin (OT) and vasopressin (VP) magnocellular neurosecretory cells (MNCs), in euhydrated (EU) and 48-h water-deprived rats (48WD). Our results show the expression of HO-1 immunoreactivity both in OT and VP neurones, as well as in a small proportion of astrocytes, both in supraoptic (SON) and paraventricular (PVN) nuclei. HO-1 expression, and its colocalisation with OT and VP neurones within the SON and PVN, was significantly enhanced in 48WD rats. Inhibition of HO activity with chromium mesoporphyrin IX chloride (CrMP; 20 mu m) resulted in a slight membrane hyperpolarisation in SON neurones from EU rats, without significantly affecting their firing activity. In 48WD rats, on the other hand, CrMP resulted in a more robust membrane hyperpolarisation, significantly decreasing neuronal firing discharge. Taken together, our results indicate that magnocellular SON and PVN neurones express HO-1, and that CO acts as an excitatory gas neurotransmitter in this system. Moreover, we found that the expression and actions of CO were enhanced in water-deprived rats, suggesting that the state-dependent up-regulation of the HO-1/CO signalling pathway contributes to enhance MNCs firing activity during an osmotic challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During their evolution, animals have developed a set of cysteine-rich peptides capable of binding various extracellular sites of voltage-gated sodium channels (VGSC). Sea anemone toxins that target VGSCs delay their inactivation process, but little is known about their selectivities. Here we report the investigation of three native type 1 toxins (CGTX-II, delta-AITX-Bcg1a and delta-AITX-Bcg1b) purified from the venom of Bunodosoma cangicum. Both delta-AITX-Bcg1a and delta-AITX-Bcg1b toxins were fully sequenced. The three peptides were evaluated by patch-clamp technique among Nav1.1-1.7 isoforms expressed in mammalian cell lines, and their preferential targets are Na(v)1.5 > 1.6 > 1.1. We also evaluated the role of some supposedly critical residues in the toxins which would interact with the channels, and observed that some substitutions are not critical as expected. In addition, CGTX-II and delta-AITX-Bcg1a evoke different shifts in activation/inactivation Boltzmann curves in Nav1.1 and 1.6. Moreover, our results suggest that the interaction region between toxins and VGSCs is not restricted to the supposed site 3 (S3-54 linker of domain IV), and this may be a consequence of distinct surface of contact of each peptide vs. targeted channel. Our data suggest that the contact surfaces of each peptide may be related to their surface charges, as CGTX-II is more positive than delta-AITX-Bcg1a and delta-AITX-Bcg1b. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stern JE, Sonner PM, Son SJ, Silva FC, Jackson K, Michelini LC. Exercise training normalizes an increased neuronal excitability of NTS-projecting neurons of the hypothalamic paraventricular nucleus in hypertensive rats. J Neurophysiol 107: 2912-2921, 2012. First published February 22, 2012; doi:10.1152/jn.00884.2011.-Elevated sympathetic outflow and altered autonomic reflexes, including impaired baroreflex function, are common findings observed in hypertensive disorders. Although a growing body of evidence supports a contribution of preautonomic neurons in the hypothalamic paraventricular nucleus (PVN) to altered autonomic control during hypertension, the precise underlying mechanisms remain unknown. Here, we aimed to determine whether the intrinsic excitability and repetitive firing properties of preautonomic PVN neurons that innervate the nucleus tractus solitarii (PVN-NTS neurons) were altered in spontaneously hypertensive rats (SHR). Moreover, given that exercise training is known to improve and/or correct autonomic deficits in hypertensive conditions, we evaluated whether exercise is an efficient behavioral approach to correct altered neuronal excitability in hypertensive rats. Patch-clamp recordings were obtained from retrogradely labeled PVN-NTS neurons in hypothalamic slices obtained from sedentary (S) and trained (T) Wistar-Kyoto (WKY) and SHR rats. Our results indicate an increased excitability of PVN-NTS neurons in SHR-S rats, reflected by an enhanced input-output function in response to depolarizing stimuli, a hyperpolarizing shift in Na+ spike threshold, and smaller hyperpolarizing afterpotentials. Importantly, we found exercise training in SHR rats to restore all these parameters back to those levels observed in WKY-S rats. In several cases, exercise evoked opposing effects in WKY-S rats compared with SHR-S rats, suggesting that exercise effects on PVN-NTS neurons are state dependent. Taken together, our results suggest that elevated preautonomic PVN-NTS neuronal excitability may contribute to altered autonomic control in SHR rats and that exercise training efficiently corrects these abnormalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra-thin (thicknesses of 50-90 nm) nanocomposite films of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm in diameter) and polyelectrolytes (doped polyaniline-PANI, poly-3,4-ethylenedioxy thiophene: polystyrene sulfonic acid-PEDOT:PSS, and sulfonated lignin-SL) are assembled layer-by-layer onto interdigitated microelectrodes aiming at to create novel nanostructured sensoactive materials for liquid media chemical sensors. The nanocomposites display a distinctive globular morphology with nanoparticles densely-packed while surrounded by polyelectrolytes. Due to the presence of np-CoFe2O4 the nanocomposites display low electrical conductivity according to impedance data. On the other hand, this apparent shortcoming turns such nanocomposites much more sensitive to the presence of ions in solution than films made exclusively of conducting polyelectrolytes. For example, the electrical resistance of np-CoFe2O4/PEDOT:PSS and PANI/SL/np-CoFe2O4/SL architectures has a 10-fold decrease when they are immersed in 20 mmol. L-1 NaCl solution. Impedance spectra fitted with the response of an equivalent circuit model suggest that the interface created between nanoparticles and polyelectrolytes plays a major role on the nanocomposites electrical/dielectrical behavior. Since charge transport is sensitive to nanoparticle-polyelectrolyte interfaces as well as to the physicochemical conditions of the environment, the np-CoFe2O4-based nanocomposites can be used as sensing elements in chemical sensors operated under ac regime and room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the synthesis of a copolymer structure, poly(9,9′-n-di-hexyl-2,7-fluorene-alt-2,5- bithiophene), referred to herein as LaPPS43, and its physico-chemical characterization. Thin films of this polymer mixed with phenyl-C61-butyric acid methyl ester (PCBM) were used as the active layer in photovoltaic devices using the ITO/PEDOT:PSS/LaPPS43: PCBM/Ca/Al bulk heterojunction structure. The devices of different active layer thicknesses were electrically studied using J-V curves and the Photo-Celiv technique. The obtained results show that LaPPS43 combined with PCBM is a promising system for photovoltaic devices. Device performance is discussed in terms of the mean drift distance x for charge carriers. Photophysical data showed that the excitonic species are all localized in the aggregated forms. The mechanism of exciton formation and dissociation is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of deposition parameters, namely polymer concentration and pH of the deposition solution, cleaning, and drying steps on the morphology and electrical characteristics of polyaniline and sulfonated polystyrene (PANI/PSS) nanostructured films deposited by the self-assembly technique is evaluated by UV-Vis spectroscopy, optical and atomic force microscopy, and electrical resistance measurements. It is found that stirring the cleaning solution during the cleaning step is crucial for obtaining homogenous films. Stirring of the cleaning solution also influences the amount of PANI adsorbed in the films. In this regard, the drying process seems to be less critical since PANI amount and film thickness are similar in films dried with N-2 flow or with an absorbent tissue. It is observed, however, that drying with N-2 flow results in rougher films. As an additional point, an assessment of the influence of the deposition method (manual versus mechanical) on the film characteristics was carried out. A significant difference on the amount of PANI and film thickness between films prepared by different human operators and by a homemade mechanical device was observed. The variability in film thickness and PANI adsorbed amount is smaller in films mechanically assembled. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A glioblastoma multiforme (GBM) is the highest grade glioma tumor (grade IV) and is the most malignant form of astrocytomas. Grade IV tumors, which are the most malignant and aggressive, affect people between the ages of 45 and 70 years. A GBM exhibits remarkable characteristics that include excessive proliferation, necrosis, genetic instability, and chemoresistance. Because of these characteristics, GBMs are difficult to treat and have a poor prognosis with a median survival of less than one year. New methods to achieve widespread distribution of therapeutic agents across infiltrative gliomas significantly improve brain tumor therapy. Photodynamic therapy (PDT) and hyperthermia (HPT) are well-established tumor therapies with minimal side effects while acting synergistically. This study introduces a new promising nanocarrier for the synergistic application of PDT and magnetic hyperthermia therapy against human glioma cell line T98 G, with cellular viability reduction down to as low as 17% compared with the control. (C) 2012 American Institute of Physics. [doi:10.1063/1.3671775]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, we reported that nucleophosmin (NPM) was increased in glioblastoma multiforme (GBM). NPM is a phosphoprotein related to apoptosis, ribosome biogenesis, mitosis, and DNA repair, but details about its function remain unclear. We treated U87MG and A172 cells with small interference RNA (siRNA) and obtained a reduction of 80% in NPM1 expression. Knockdown at the protein level was evident after the 4th day and was maintained until the 7th day of transfection that was investigated by quantitative proteomic analysis using isobaric tags. The comparison of proteomic analysis of NPM1-siRNA against controls allowed the identification of 14 proteins, two proteins showed increase and 12 presented a reduction of expression levels. Gene ontology assigned most of the hypoexpressed proteins to apoptosis regulation, including GRP78. NPM1 silencing did not impair cell proliferation until the 7th day after transfection, but sensitized U87MG cells to temozolomide (TMZ), culminating with an increase in cell death and provoking at a later period a reduction of colony formation. In a large data set of GBM patients, both GRP78 and NPM1 genes were upregulated and presented a tendency to shorter overall survival time. In conclusion, NPM proved to participate in the apoptotic process, sensitizing TMZ-treated U87MG and A172 cells to cell death, and in association with upregulation of GRP78 may be helpful as a predictive factor of poor prognosis in GBM patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new methodology for the synthesis of tunable patch filters is presented. The methodology helps the designer to perform a theoretical analysis of the filter through a coupling matrix that includes the effect of the tuning elements used to tune the filter. This general methodology accounts for any tuning parameter desired and was applied to the design of a tunable dual-mode patch filter with independent control of center frequency and bandwidth (BW). The bandpass filter uses a single triangular resonator with two etched slots that split the fundamental degenerate modes and form the filter passband. Varactor diodes assembled across the slots are used to vary the frequency of each degenerate fundamental mode independently, which is feasible due to the nature of the coupling scheme of the filter. The varactor diode model used in simulations, their assembling, the dc bias configuration, and measured results are presented. The theory results are compared to the simulations and to measurements showing a very good agreement and validating the proposed methodology. The fabricated filter presents an elliptic response with 20% of center frequency tuning range around 3.2 GHz and a fractional BW variation from 4% to 12% with low insertion loss and high power handling with a 1-dB compression point higher than +14.5 dB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The most frequent and malignant brain cancer is glioblastoma multiforme (GBM). In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53) are known to be tumorigenic in nude mice, but T98G cells (mutant p53) are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. Results: We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. Conclusions: Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In many types of cancer, prostaglandin E-2 (PGE(2)) is associated with tumour related processes including proliferation, migration, angiogenesis and apoptosis. However in gliomas the role of this prostanoid is poorly understood. Here, we report on the proliferative, migratory, and apoptotic effects of PGE(1), PGE(2) and Ibuprofen (IBP) observed in the T98G human glioma cell line in vitro. Methods: T98G human glioma cells were treated with IBP, PGE(1) or PGE(2) at varying concentrations for 24-72 hours. Cell proliferation, mitotic index and apoptotic index were determined for each treatment. Caspase-9 and caspase-3 activity was measured using fluorescent probes in live cells (FITC-LEHD-FMK and FITC-DEVD-FMK respectively). The migratory capacity of the cells was quantified using a scratch migration assay and a transwell migration assay. Results: A significant decrease was seen in cell number (54%) in the presence of 50 mu M IBP. Mitotic index and bromodeoxyuridine (BrdU) incorporation were also decreased 57% and 65%, respectively, by IBP. The apoptotic index was increased (167%) and the in situ activity of caspase-9 and caspase-3 was evident in IBP treated cells. The inhibition of COX activity by IBP also caused a significant inhibition of cell migration in the monolayer scratch assay (74%) and the transwell migration assay (36%). In contrast, the presence of exogenous PGE(1) or PGE(2) caused significant increases in cell number (37% PGE(1) and 45% PGE(2)). When mitotic index was measured no change was found for either PG treatment. However, the BrdU incorporation rate was significantly increased by PGE(1) (62%) and to a greater extent by PGE(2) (100%). The apoptotic index was unchanged by exogenous PGs. The addition of exogenous PGs caused an increase in cell migration in the monolayer scratch assay (43% PGE(1) and 44% PGE(2)) and the transwell migration assay (28% PGE(1) and 68% PGE(2)). Conclusions: The present study demonstrated that treatments which alter PGE(1) and PGE(2) metabolism influence the proliferative and apoptotic indices of T98G glioma cells. The migratory capacity of the cells was also significantly affected by the change in prostaglandin metabolism. Modifying PG metabolism remains an interesting target for future studies in gliomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma remains one of the most devastating human malignancies, and despite therapeutic advances, there are no drugs that significantly improve the patient survival. Altered expression of the Aurora kinases was found in different malignancies, and their inhibition has been studied in cancer therapy. In this study, we analyzed the expression of Aurora A and Aurora B in glioblastoma samples and also analyzed whether the effects of Aurora kinase inhibition were associated with temozolomide or not on cell lines and primary cultures of glioblastoma. RT-PCR assays were used to determine the mRNA expression in glioblastoma tumor samples and in the cell lines. Cell proliferation was measured by XTT assay, and apoptosis was determined by flow cytometry. Drug combination analyses were made based in Chou-Talalay method. Gamma radiation for clonogenic survival used the doses of 2, 4 and 6 Gy. Changes in Aurora B level were assessed by Western blot analysis. Aurora A and B were expressed in glioblastoma samples as well as in the glioblastoma cell lines (n = 6). Moreover, ZM447439, a selective Aurora kinase inhibitor, decreased the proliferation separately and synergistically with temozolomide in primary cultures and cell lines of glioblastoma. ZM also enhanced the effects of radiation on the two cell lines studied (U343 and U251), mainly when associated with TMZ in U343 cells. Treatment with ZM induced apoptotic cell death and diminished Aurora B protein level. These data suggest that Aurora kinase inhibition may be a target for glioblastoma treatment and could be used as adjuvant to chemo- and radiotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-4-Phenyl 2-acetylpyridine thiosemicarbazone (H2Ac4Ph; N-(phenyl)-2-(1-(pyridin-2-yl)ethylidene) hydrazinecarbothioamide) and its N-4-ortho-, -meta- and -para-fluorophenyl (H2Ac4oFPh, H2Ac4mFPh, H2Ac4pFPh), N-4-ortho-, -meta- and -para-chlorophenyl (H2Ac4oClPh, H2Ac4mClPh, H2Ac4pClPh), N-4-ortho-, -meta- and -para-iodophenyl (H2Ac4oIPh, H2Ac4mIPh, H2Ac4pIPh) and N-4-ortho-, -meta- and -para-nitrophenyl (H2Ac4oNO(2)Ph, H2Ac4mNO(2)Ph, H2Ac4pNO(2)Ph) derivatives were assayed for their cytotoxicity against human malignant breast (MCF-7) and glioma (T98G and U87) cells. The compounds were highly cytotoxic against the three cell lineages (IC50: MCF-7, 52-0.16 nM; T98G, 140-1.0 nM; U87, 160-1.4 nM). All tested thiosemicarbazones were more cytotoxic than etoposide and did not present any haemolytic activity at up to 10(-5) M. The compounds were able to induce programmed cell death. H2Ac4pClPh partially inhibited tubulin assembly at high concentrations and induced cellular microtubule disorganization. (C) 2012 Elsevier Ltd. All rights reserved.