11 resultados para pairing in nuclear matter
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d + Au and p + p collisions at root S-NN = 200 GeV in the transverse-momentum range 0.85 <= p(T)(e) <= 8.5 GeV/c. In central d + Au collisions, the nuclear modification factor R-dA at 1.5 < p(T) < 5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p + p collisions, and shows that the mass-dependent Cronin enhancement observed at the Relativistic Heavy Ion Collider extends to the heavy D meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the pi(0) and heavy-flavor-electron nuclear modification factors R-AA. DOI: 10.1103/PhysRevLett.109.242301
Resumo:
Nuclear magnetic resonance (NMR) was successfully employed to test several protocols and ideas in quantum information science. In most of these implementations, the existence of entanglement was ruled out. This fact introduced concerns and questions about the quantum nature of such bench tests. In this paper, we address some issues related to the non-classical aspects of NMR systems. We discuss some experiments where the quantum aspects of this system are supported by quantum correlations of separable states. Such quantumness, beyond the entanglement-separability paradigm, is revealed via a departure between the quantum and the classical versions of information theory. In this scenario, the concept of quantum discord seems to play an important role. We also present an experimental implementation of an analogue of the single-photon Mach-Zehnder interferometer employing two nuclear spins to encode the interferometric paths. This experiment illustrates how non-classical correlations of separable states may be used to simulate quantum dynamics. The results obtained are completely equivalent to the optical scenario, where entanglement (between two field modes) may be present.
Resumo:
We investigate standard and non-standard solar neutrino signals in direct dark matter detection experiments. It is well known that even without new physics, scattering of solar neutrinos on nuclei or electrons is an irreducible background for direct dark matter searches, once these experiments reach the ton scale. Here, we entertain the possibility that neutrino interactions are enhanced by new physics, such as new light force carriers (for instance a "dark photon") or neutrino magnetic moments. We consider models with only the three standard neutrino flavors, as well as scenarios with extra sterile neutrinos. We find that low-energy neutrino-electron and neutrino-nucleus scattering rates can be enhanced by several orders of magnitude, potentially enough to explain the event excesses observed in CoGeNT and CRESST. We also investigate temporal modulation in these neutrino signals, which can arise from geometric effects, oscillation physics, non-standard neutrino energy loss, and direction-dependent detection efficiencies. We emphasize that, in addition to providing potential explanations for existing signals, models featuring new physics in the neutrino sector can also be very relevant to future dark matter searches, where, on the one hand, they can be probed and constrained, but on the other hand, their signatures could also be confused with dark matter signals.
Resumo:
Background: Heavy-flavor production in p + p collisions is a good test of perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p + p results, quantified with the nuclear-modification factor (R-AA), provides information on both cold-and hot-nuclear-matter effects. Midrapidity heavy-flavor R-AA measurements at the Relativistic Heavy Ion Collider have challenged parton-energy-loss models and resulted in upper limits on the viscosity-entropy ratio that are near the quantum lower bound. Such measurements have not been made in the forward-rapidity region. Purpose: Determine transverse-momentum (p(T)) spectra and the corresponding R-AA for muons from heavy-flavor meson decay in p + p and Cu + Cu collisions at root s(NN) = 200 GeV and y = 1.65. Method: Results are obtained using the semileptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p(T) spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p + p collisions at root s = 200 GeV, integrated over p(T) and in the rapidity range 1.4 < y < 1.9, is found to be d(sigma e (e) over bar)/dy = 0.139 +/- 0.029 (stat)(-0.058)(+0.051) (syst) mb. This result is consistent with a perturbative fixed-order-plus-next-to-leading-log calculation within scale uncertainties and is also consistent with expectations based on the corresponding midrapidity charm-production cross section measured by PHENIX. The R-AA for heavy-flavor muons in Cu + Cu collisions is measured in three centrality bins for 1 < p(T) < 4 GeV/c. Suppression relative to binary-collision scaling (R-AA < 1) increases with centrality. Conclusions: Within experimental and theoretical uncertainties, the measured charm yield in p + p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu + Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.
Resumo:
High precision elastic and inelastic angular distributions have been measured for the O-16 + Al-27 system at a beam energy of 100 MeV. The data analysis confirms a rainbow formation as already predicted by parameter-free Coupled Channel calculations. It also helps to reveal the crucial role of inelastic couplings in the rainbow formation for heavier systems even at energies far above the Coulomb barrier. This feature, well known in atomic/molecular scattering, is experimentally studied for the first time in Nuclear Physics. (C) 2012 Elsevier B.V. All rights reserved.
Cerebral White Matter Oxidation and Nitrosylation in Young Rodents With Kaolin-Induced Hydrocephalus
Resumo:
Hydrocephalus is associated with reduced blood flow in periventricular white matter. To investigate hypoxic and oxidative damage in the brains of rats with hydrocephalus, kaolin was injected into the cisterna magna of newborn 7- and 21-day-old Sprague-Dawley rats, and ventricle size was assessed by magnetic resonance imaging at 7, 21, and 42 days of age. In-situ evidence of hypoxia in periventricular capillaries and glial cells was shown by pimonidazole hydrochloride binding. Biochemical assay of thiobarbituric acid reaction and immunohistochemical detection of malondialdehyde and 4-hydroxy-2-nonenal indicated the presence of lipid peroxidation in white matter. Biochemical assay of nitrite indicated increased nitric oxide production. Nitrotyrosine immunohistochemistry showed nitrosylated proteins in white matter reactive microglia and astrocytes. Activities of the antioxidant enzymes catalase and glutathione peroxidase were not increased, and altered hypoxia-inducible factor 1 alpha was not detected by quantitative reverse transcription-polymerase chain reaction. Cerebral vascular endothelial growth factor expression determined by quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay was not changed, but vascular endothelial growth factor immunoreactivity was increased in reactive astrocytes of hydrocephalic white matter. To determine if nitric oxide synthase is involved in the pathogenesis, we induced hydrocephalus in 7-day-old wild-type and neuronal nitric oxide synthase-deficient mice. At 7 days, the wild-type and mutant mice exhibited equally severe ventriculomegaly and no behavioral differences, although increased glial fibrillary acidic protein was less in the mutant mice. We conclude that hypoxia, via peroxidation and nitrosylation, contributes to brain changes in young rodents with hydrocephalus and that compensatory mechanisms are negligible.
Resumo:
Structure of intertidal and subtidal benthic macrofauna in the northeastern region of Todos os Santos Bay (TSB), northeast Brazil, was investigated during a period of two years. Relationships with environmental parameters were studied through uni- and multivariate statistical analyses, and the main distributional patterns shown to be especially related to sediment type and content of organic fractions (Carbon, Nitrogen, Phosphorus), on both temporal and spatial scales. Polychaete annelids accounted for more than 70% of the total fauna and showed low densities, species richness and diversity, except for the area situated on the reef banks. These banks constitute a peculiar environment in relation to the rest of the region by having coarse sediments poor in organic matter and rich in biodetritic carbonates besides an abundant and diverse fauna. The intertidal region and the shallower area nearer to the oil refinery RLAM, with sediments composed mainly of fine sand, seem to constitute an unstable system with few highly dominant species, such as Armandia polyophthalma and Laeonereis acuta. In the other regions of TSB, where muddy bottoms predominated, densities and diversity were low, especially in the stations near the refinery. Here the lowest values of the biological indicators occurred together with the highest organic compound content. In addition, the nearest sites (stations 4 and 7) were sometimes azoic. The adjacent Caboto, considered as a control area at first, presented low density but intermediate values of species diversity, which indicates a less disturbed environment in relation to the pelitic infralittoral in front of the refinery. The results of the ordination analyses evidenced five homogeneous groups of stations (intertidal; reef banks; pelitic infralittoral; mixed sediments; Caboto) with different specific patterns, a fact which seems to be mainly related to granulometry and chemical sediment characteristics.
Resumo:
The coastal upwelling off Cabo Frio (SE Brazilian coast, SEBC) represents an exception to the world`s oceans since the majority of the upwelling areas are located in eastern boundary current systems. Cabo Frio represents an interesting area for investigation due to its tight physical-biological interaction and the importance of the region as a major fishery area in the SEBC. We analyzed a suite of lipid biomarkers to apportion the main sources of organic matter in surface sediments of the continental shelf off Cabo Frio, comparing the area to non-upwelling regions off the SEBC (shelf break off Cabo Frio and continental shelf off Ubatuba). During spring and summer (the upwelling period), diatoms are probably the major sources of polyunsaturated fatty acids (PUFAs) and C-28 sterols in surface sediments from Cabo Frio continental shelf. Sediments sampled in winter showed, in contrast, lower relative abundance of PUFAs and higher stanol/stenol ratio values. In deeper regions off Cabo Frio, elevated concentrations of alkenones, 24-methylcholest-5,22E-dien-3 beta-ol and 24-ethylcholest-5-en-3 beta-ol during the spring may be produced by prymnesiophytes or cryptophytes and cyanobacteria, respectively. In Ubatuba, the C-27 and C-28 sterols are likely derived from omnivorous salps and nanoflagellates. At non-upwelling areas, despite the increase in biomarker concentrations during spring and summer, lower concentrations of PUFAs, phytol and algal sterols than in shelf areas off Cabo Frio suggest the importance of the upwelling system to the rapid transfer of organic carbon to surface sediments. Our results suggest that spatial and temporal variability in organic matter production and deposition merits consideration for constraining the carbon budgets in the coastal region off Cabo Frio. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
It is well known that crystals of topaz from the Eastern Brazilian Pegmatite Province may turn blue by the irradiation with Co-60 gamma rays followed by heat treatment. Also, it is known that the sensation of color changes with the thickness of these crystals. The dependence of the color, given by 1931 CIE chromaticity coordinates, with the thickness of the crystal was analyzed. The absorbance used in the calculation of these coordinates was given by the sum of Gaussian lines. The parameters of these lines were determined through the decomposition of the optical absorption spectra in the ultraviolet and visible regions. The decomposition revealed several lines, whose assignment was made considering studies in spodumene and beryl crystals and highly accurate quantum mechanical calculations. The transmittance becomes very narrow with increasing thickness, and the CIE chromaticity coordinates converge to the borderline of the CIE Chromaticity Diagram at the wavelength of maximum transmittance. Furthermore, the purity of color increases with increasing thickness, and the dominant wavelength reaches the wavelength of maximum transmittance.
Resumo:
The mechanism of forward angle incoherent photoproduction of pseudoscalar mesons off nuclei is revisited via the time-dependent multicollisional Monte Carlo (MCMC) intranuclear cascade model. Our results-combined with recent developments to address coherent photoproduction-reproduce with good accuracy recent JLab data of pi(0) photoproduction from carbon and lead at an average photon energy k similar to 5.2 GeV. For the case of. photoproduction, our results for k = 9 GeV suggest that future measurements to extract the eta ->gamma gamma decay width via the Primakoff method should be focused on light nuclei, where the disentanglement between the Coulomb and strong amplitudes is more easily achieved. The prospects to use heavy nuclei data to access the unknown eta N cross section in cold nuclear matter are also presented.
Resumo:
Blood pressure (BP) and physical activity (PA) levels are inversely associated. Since genetic factors account for the observed variation in each of these traits, it is possible that part of their association may be related to common genetic and/or environmental influences. Thus, this study was designed to estimate the genetic and environmental correlations of BP and PA phenotypes in nuclear families from Muzambinho, Brazil. Families including 236 offspring (6 to 24 years) and their 82 fathers and 122 mothers (24 to 65 years) were evaluated. BP was measured, and total PA (TPA) was assessed by an interview (commuting, occupational, leisure time, and school time PA). Quantitative genetic modeling was used to estimate maximal heritability (h²), and genetic and environmental correlations. Heritability was significant for all phenotypes (systolic BP: h² = 0.37 ± 0.10, P < 0.05; diastolic BP: h² = 0.39 ± 0.09, P < 0.05; TPA: h² = 0.24 ± 0.09, P < 0.05). Significant genetic (r g) and environmental (r e) correlations were detected between systolic and diastolic BP (r g = 0.67 ± 0.12 and r e = 0.48 ± 0.08, P < 0.05). Genetic correlations between BP and TPA were not significant, while a tendency to an environmental cross-trait correlation was found between diastolic BP and TPA (r e = -0.18 ± 0.09, P = 0.057). In conclusion, BP and PA are under genetic influences. Systolic and diastolic BP share common genes and environmental influences. Diastolic BP and TPA are probably under similar environmental influences.