21 resultados para optical water mass classification
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The paleoclimate version of the National Center for Atmospheric Research Community Climate System Model version 3 (NCAR-CCSM3) is used to analyze changes in the water formation rates in the Atlantic, Pacific, and Indian Oceans for the Last Glacial Maximum (LGM), mid-Holocene (MH) and pre-industrial (PI) control climate. During the MH, CCSM3 exhibits a north-south asymmetric response of intermediate water subduction changes in the Atlantic Ocean, with a reduction of 2 Sv in the North Atlantic and an increase of 2 Sv in the South Atlantic relative to PI. During the LGM, there is increased formation of intermediate water and a more stagnant deep ocean in the North Pacific. The production of North Atlantic Deep Water (NADW) is significantly weakened. The NADW is replaced in large extent by enhanced Antarctic Intermediate Water (AAIW), Glacial North Atlantic Intermediate Water (GNAIW), and also by an intensified of Antarctic Bottom Water (AABW), with the latter being a response to the enhanced salinity and ice formation around Antarctica. Most of the LGM intermediate/mode water is formed at 27.4 < sigma(theta) < 29.0 kg/m(3), while for the MH and PI most of the subduction transport occurs at 26.5 < sigma(theta) < 27.4 kg/m(3). The simulated LGM Southern Hemisphere winds are more intense by 0.2-0.4 dyne/cm(2). Consequently, increased Ekman transport drives the production of intermediate water (low salinity) at a larger rate and at higher densities when compared to the other climatic periods.
Resumo:
We examine Weddell Sea deep water mass distributions with respect to the results from three different model runs using the oceanic component of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM). One run is inter-annually forced by corrected NCAR/NCEP fluxes, while the other two are forced with the annual cycle obtained from the same climatology. One of the latter runs includes an interactive sea-ice model. Optimum Multiparameter analysis is applied to separate the deep water masses in the Greenwich Meridian section (into the Weddell Sea only) to measure the degree of realism obtained in the simulations. First, we describe the distribution of the simulated deep water masses using observed water type indices. Since the observed indices do not provide an acceptable representation of the Weddell Sea deep water masses as expected, they are specifically adjusted for each simulation. Differences among the water masses` representations in the three simulations are quantified through their root-mean-square differences. Results point out the need for better representation (and inclusion) of ice-related processes in order to improve the oceanic characteristics and variability of dense Southern Ocean water masses in the outputs of the NCAR-CCSM model, and probably in other ocean and climate models.
Resumo:
To boost crop yield, sugarcane growers are using increasing amounts of pesticides to combat insects and weeds. But residues of these compounds can pollute water resources, such as lakes, rivers and aquifers. The present paper reports the results of a study of water samples from the Feijao River, which is the source of drinking water for the city of Sao Carlos, Sao Paulo, Brazil. The samples were evaluated for the presence of four leading pesticides - ametryn, atrazine, diuron and fipronil - used on sugarcane, the dominant culture in the region. The samples were obtained from three points along the river: the headwaters, along the middle course of the river and just before the municipal water intake station. The pesticides were extracted from the water samples by solid-phase extraction (SPE) and then analyzed by liquid chromatography with diode array detection (LC-DAD). The analytical method was validated by traditional methods, obtaining recovery values between 90 and 95%, with precision deviations inferior to 2.56%, correlation coefficients above 0.99 and detection and quantification limits varying from 0.02 to 0.05 mg L-1 and 0.07 to 0.17 mg L-1, respectively. No presence of residues of the pesticides was detected in the samples, considering the detection limits of the method employed.
Resumo:
The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.
Thermal design of a tray-type distillation column of an ammonia/water absorption refrigeration cycle
Resumo:
The goal of this paper is to present an analysis of a segmented weir sieve-tray distillation column for a 17.58 kW (5 TR) ammonia/water absorption refrigeration cycle. Balances of mass and energy were performed based on the method of Ponchon-Savarit, from which it was possible to determine the ideal number of trays. The analysis showed that four ideal trays were adequate for that small absorption refrigeration system having the feeding system to the column right above the second tray. It was carried out a sensitivity analysis of the main parameters. Vapor and liquid pressure drop constraint along with ammonia and water mass flow ratios defined the internal geometrical sizes of the column, such as the column diameter and height, as well as other designing parameters. Due to the lack of specific correlations, the present work was based on practical correlations used in the petrochemical and beverage production industries. The analysis also permitted to obtain the recommended values of tray spacing in order to have a compact column. The geometry of the tray turns out to be sensitive to the charge of vapor and, to a lesser extent, to the load of the liquid, being insensible to the diameter of tray holes. It was found a column efficiency of 50%. Finally, the paper presents some recommendations in order to have an optimal geometry for a compact size distillation column. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Amazon basin is a region of constant scientific interest due to its environmental importance and its biodiversity and climate on a global scale. The seasonal variations in water volume are one of the examples of topics studied nowadays. In general, the variations in river levels depend primarily on the climate and physics characteristics of the corresponding basins. The main factor which influences the water level in the Amazon Basin is the intensive rainfall over this region as a consequence of the humidity of the tropical climate. Unfortunately, the Amazon basin is an area with lack of water level information due to difficulties in access for local operations. The purpose of this study is to compare and evaluate the Equivalent Water Height (Ewh) from GRACE (Gravity Recovery And Climate Experiment) mission, to study the connection between water loading and vertical variations of the crust due to the hydrologic. In order to achieve this goal, the Ewh is compared with in-situ information from limnimeter. For the analysis it was computed the correlation coefficients, phase and amplitude of GRACE Ewh solutions and in-situ data, as well as the timing of periods of drought in different parts of the basin. The results indicated that vertical variations of the lithosphere due to water mass loading could reach 7 to 5 cm per year, in the sedimentary and flooded areas of the region, where water level variations can reach 10 to 8 m.
Resumo:
The aim of this study was to analyze the distribution and abundance of the fish fauna of Palmas bay on Anchieta Island in southeastern Brazil. Specimens were caught in the summer and winter of 1992, using an otter trawl at three locations in the bay. The specimens were caught in both the nighttime and daytime. Data on the water temperature and salinity were recorded for the characterization of the predominant water mass in the region, and sediment samples were taken for granulometric analysis. A total of 7 656 specimens (79 species), with a total weight of approximately 300 kg, were recorded. The most abundant species were Eucinostomus argenteus, Ctenosciaena gracilicirrhus, Haemulon steindachneri, Eucinostomus gula and Diapterus rhombeus, which together accounted for more than 73% of the sample. In general, the ecological indices showed no differences in the composition of species for the abiotic variables analyzed. The multivariate analysis showed that the variations in the distribution of the fish fauna were mainly associated with intra-annual differences in temperature and salinity, resulting from the presence of South Atlantic Central Water (SACW) in the area during the summer. The analysis also showed an association with the type of bottom and a lesser association with respect to the night/day periods.
Resumo:
A high-resolution, multi-proxy record has been used to determine the environmental changes during the Holocene on the southern Brazilian shelf Present oceanographic conditions reveal wind and freshwater input as the determinants of short-term productivity changes in the study area. Magnetic susceptibility and grain-size variations, together with proxies of productivity (organic carbon, carbon accumulation rate, Ba, Sr, and Ca content, Ba/Al, Ba/Ti, and Al/Ti ratios) were analyzed and compared with proxies of redox condition (V/Ti ratio), terrigenous input (Fe/Ca and Ti/Ca ratios), as well as other Element/Ti ratios, to evaluate the paleoceanographic and paleoclimatic changes over the period. The core covers a time interval of about 7650 years, with sedimentation rates varying from 0.025 to 0.250 cm a(-1), which represent time intervals of between 8 and 80 a per sample. There is a clear change in the sedimentation rate at about 2800 B.P. All grain-size and elemental results indicate the occurrence of conspicuous changes between 5200 and 5000 cal. B.P., as well as between 3000 and 2800 cal. B.P. A comparison of the results with the palynological information available from the adjacent continental areas suggests that the sedimentary changes in this last interval may be correlated with the onset of modern climatic conditions in South America, and especially, with the onset of the Plata Plume Water, a water mass that carries cold, less saline waters towards the north. However, minor changes are observed at ca. 1500 B.P. and are correlated with an increase in the atmospheric humidity. Furthermore, a time-series analysis undertaken using several proxies indicated the occurrence of Sub-Milankovitch cycles, which may be compared with those reported worldwide. (C) 2008 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
The Rio de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28,S) during austral winter and 32 degrees S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Hydrographic data collected during surveys carried out in austral winter 2003 and summer 2004 are used to analyze the distributions of temperature (T) and salinity (S) over the continental shelf and slope of eastern South America between 27 degrees S and 39 degrees S. The water mass structure and the characteristics of the transition between subantarctic and subtropical shelf water (STSW), referred to as the subtropical shelf front (STSF), as revealed by the vertical structure of temperature and salinity are discussed. During both surveys, the front intensifies downward and extends southwestward from the near coastal zone at 33 degrees S to the shelf break at 36 degrees S. In austral winter subantarctic shelf water (SASW), derived from the northern Patagonia shelf, forms a vertically coherent cold wedge of low salinity waters that locally separate the outer shelf STSW from the fresher inner shelf Plata Plume Water (PPW) derived from the Rio de la Plata. Winter T-S diagrams and cross-shelf T and S distributions indicate that mixtures of PPW and tropical water only occur beyond the northernmost extent of pure SASW, and form STSW and an inverted thermocline characteristic of this region. In summer 2004, dilution of Tropical water (TW) occurs at two distinct levels: a warm near surface layer, associated to PPW-TW mixtures, similar to but significantly warmer than winter STSW, and a colder (T similar to 16 degrees C) salinity minimum layer at 40-50 m depth, created by SASW-STSW mixtures across the STSF. In winter, the salinity distribution controls the density structure creating a cross-shore density gradient, which prevents isopycnal mixing across the STSF. Temperature stratification in summer induces a sharp pycnocline providing cross-shelf isopycnal connections across the STSF. Cooling and freshening of the upper layer observed at stations collected along the western edge of the Brazil Current suggest offshore export of shelf waters. Low T and S filaments, evident along the shelf break in the winter data, suggest that submesoscale eddies may enhance the property exchange across the shelf break. These observations suggest that as the subsurface shelf waters converge at the STSF, they flow southward along the front and are expelled offshore, primarily along the front axis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Riverine waters bring to seas a variety of suspended materials, which are ultimately deposited on the shelf or exported to the deep ocean. Investigation of the mineralogical contents of these continental-borne constituents on seafloors may reveal valuable information about the environmental conditions in the drainage basin. In this note we report results of X-ray diffraction and other analysis of sediments in bottom samples collected on the continental shelf under influence of the Plata River and the Patos Lagoon, in South America. The analysis reveals that non-clay materials are mostly concentrated south of 33 degrees S, while clay sediments are relatively more abundant further north. We propose that such distributions are controlled by the circulation pattern and water mass distribution of the lower and upper layers, respectively. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The results obtained in the August and December 2003, August 2004 and January 2005 oceanographic campaigns in the northern region of the Todos os Santos Bay (lat. 12 degrees 44.5`S; long. 038 degrees 35.00`W) between the Madre de Deus and Mare islands are analyzed. Instruments of continuous and discrete samplings were used to measure hydrographic properties currents and tides. The water mass of the northern region of the bay is forced by semidiurnal and mesotides of form number 0.08 and the lunar component M(2) height was estimated at 91cm. The time series of the surface currents indicated movements in the N/S direction, forced by the tide with maximum magnitudes of 0.73 m.s(-1) on the December 2003 campaign. However, in August 2004 the currents were dominated by the wind stress forcing, with a maximum speed of 1.85 m.s(-1) and SE direction. Near the bottom, the influence of the tide is not as evident, with a decrease in intensity due to internal and bottom friction, with a maximum velocity of 0.17 m.s(-1). The thermal and haline structures were weakly horizontally, as well as vertically stratified, with extreme values varying in the intervals 23 degrees C (August, 2004) to 28 degrees C (December, 2003) and 31.0 psu (August, 2003) to 36.0 psu (December, 2003), respectively. Some conclusions may be drawn from these results: i) The signs of the dilution of the fresh water discharges of the Caipe, Mataripe and Sao Paulo rivers in the region under the influence of the RLAM were observed only during the winter periods, but in the summer the region was flooded by waters of oceanic origin and the salinities above 36.0 indicated TW mass intrusion; ii) The N-S circulation near the RLAM is strongly dominated by the tide, and the importance of the M(2) component was unequivocal, however, the E-W component presented some tidal modulation away from abrupt bottom topographical changes, and iii) The residual series, calculated as the difference between the original and modeled, is about 1/4 of the original and confirmed its semidiurnal character.
Resumo:
The Community Climate System Model version 3 is used to analyse changes in water mass subduction rates in the South Atlantic Ocean over the 21st century. The model results are first compared to observations over 1950-2000, and shown to be rather good. The subduction rates do not change significantly over the 21st century, but the densities at which water masses form become significantly lighter. The strong westerly winds in this region do not change much, which suggests small changes to the rate at which the Atlantic sector of the Southern Ocean takes up heat and carbon dioxide over the 21st century.
Resumo:
The multi-scale synoptic circulation system in the southeastern Brazil (SEBRA) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or ""features,"" are identified from previous observational studies. These features include the southward-flowing Brazil Current (BC), the eddies off Cabo Sao Tome (CST - 22 degrees S) and off Cabo Frio (CF - 23 degrees S), and the upwelling region off CF and CST. Their synoptic water-mass (T-S) structures are characterized and parameterized to develop temperature-salinity (T-S) feature models. Following [Gangopadhyay, A., Robinson, A.R., Haley, PJ., Leslie, W.J., Lozano, C.j., Bisagni, J., Yu, Z., 2003. Feature-oriented regional modeling and simulation (forms) in the gulf of maine and georges bank. Cont. Shelf Res. 23 (3-4), 317-353] methodology, a synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in this region is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and objectively analyzed with available background climatology in the deep region. These initialization fields are then used for dynamical simulations via the Princeton Ocean Model (POM). A few first applications of this methodology are presented in this paper. These include the BC meandering, the BC-eddy interaction and the meander-eddy-upwelling system (MEUS) simulations. Preliminary validation results include realistic wave-growth and eddy formation and sustained upwelling. Our future plan includes the application of these feature models with satellite, in-situ data and advanced data-assimilation schemes for nowcasting and forecasting the SEBRA region. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The temporal and spatial variation of Paralonchurus brasiliensis density (fish per m(2)) in relation to environmental factors was studied on the coasts of Ubatuba and Caraguatatuba, south-eastern Brazil. The fish were collected by shrimp fishery trawl on a monthly basis from January to December, 2002. Seven depths were previously established and for each one the temperature, salinity, organic matter content and grain size of the sediment (phi) was measured. The seasonal analysis of temperature and salinity indicated the presence of the water masses South Atlantic Central Water (SACW) and Coastal Waters (CW) acting in the study area. A total of 29,808 fish were collected during the study period. The highest densities were registered during the summer and autumn indicating an association with CW. The fish population moved to shallow depths during the intrusion of the cold water mass, SACW. The highest densities were registered in depths where the sediment composition ranged from fine sand to silt-clay. Thus, the temperature and type of the sediment are the main environmental factors which affect the spatial-temporal variation of P. brasiliensis density in south-eastern Brazil.