9 resultados para optical characterization

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Delignification pretreatments of biomass and methods to assess their efficacy are crucial for biomass-to-biofuels research and technology. Here, we applied confocal and fluorescence lifetime imaging microscopy (FLIM) using one- and two-photon excitation to map the lignin distribution within bagasse fibers pretreated with acid and alkali. The evaluated spectra and decay times are correlated with previously calculated lignin fractions. We have also investigated the influence of the pretreatment on the lignin distribution in the cell wall by analyzing the changes in the fluorescence characteristics using two-photon excitation. Eucalyptus fibers were also analyzed for comparison. Results Fluorescence spectra and variations of the decay time correlate well with the delignification yield and the lignin distribution. The decay dependences are considered two-exponential, one with a rapid (τ1) and the other with a slow (τ2) decay time. The fastest decay is associated to concentrated lignin in the bagasse and has a low sensitivity to the treatment. The fluorescence decay time became longer with the increase of the alkali concentration used in the treatment, which corresponds to lignin emission in a less concentrated environment. In addition, the two-photon fluorescence spectrum is very sensitive to lignin content and accumulation in the cell wall, broadening with the acid pretreatment and narrowing with the alkali one. Heterogeneity of the pretreated cell wall was observed. Conclusions Our results reveal lignin domains with different concentration levels. The acid pretreatment caused a disorder in the arrangement of lignin and its accumulation in the external border of the cell wall. The alkali pretreatment efficiently removed lignin from the middle of the bagasse fibers, but was less effective in its removal from their surfaces. Our results evidenced a strong correlation between the decay times of the lignin fluorescence and its distribution within the cell wall. A new variety of lignin fluorescence states were accessed by two-photon excitation, which allowed an even broader, but complementary, optical characterization of lignocellulosic materials. These results suggest that the lignin arrangement in untreated bagasse fiber is based on a well-organized nanoenvironment that favors a very low level of interaction between the molecules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Er3+-Yb3+ co-doped MgAl2O4 phosphor powders have been prepared by the combustion method. The phosphor powders are well characterized by X-ray diffraction (XRD) and energy dispersive (EDX) techniques. The absorption spectrum of Er3+/Er3+-Yb3+ doped/co-doped phosphor powder has been recorded in the UV-Vis-NIR region of the electro-magnetic spectrum. The evidence for indirect pumping under 980 nm excitation of Er3+ from Yb3+ was observed in the MgAl2O4 matrix material. Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process in MgAl2O4:Er3+ phosphor. Three defect centres were identified in irradiated phosphor by ESR measurements which were carried out at room temperature and these were assigned to an O- ion and F+ centres. O- ion (hole centre) appears to correlate with the low temperature TSL peak at 210 A degrees C and one of the F+ centres (electron centre) is related to the high temperature peak at 460 A degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, two ruthenium complexes, [Ru(bpy)(3)](PF6)(2) and [Ru(ph2phcn)(3)](PF6)(2) in poly(inethylinethacrylate) matrix were employed to build single-layer light-emitting electrochemical cells by spin coating on indium tin oxide substrate. In both cases the electroluminescence spectra exhibit a relatively broad band with maxima near to 625 rim and CIE (x, y) color coordinates of (0.64, 0.36), which are comparable with the photoluminescence data in the same medium. The best result was obtained with the [Ru(bpy)(3)](PF6)(2) device where the optical output power approaches 10 mu W at the band maximum with a wall-plug efficiency higher than 0.03%. The lowest driving voltage is about 4 V for an electrical current of 20 mA. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, an experimental and numerical analysis and characterization of functionally graded structures (FGSs) is developed. Nickel (Ni) and copper (Cu) materials are used as basic materials in the numerical modeling and experimental characterization. For modeling, a MATLAB finite element code is developed, which allows simulation of harmonic and modal analysis considering the graded finite element formulation. For experimental characterization, Ni-Cu FGSs are manufactured by using spark plasma sintering technique. Hardness and Young's modulus are found by using microindentation and ultrasonic measurements, respectively. The effective gradation of Ni/Cu FGS is addressed by means of optical microscopy, energy dispersive spectrometry, scanning electron microscopy and hardness testing. For the purpose of comparing modeling and experimental results, the hardness curve, along the gradation direction, is used for identifying the gradation profile; accordingly, the experimental hardness curve is used for approximating the Young's modulus variation and the graded finite element modeling is used for verification. For the first two resonance frequency values, a difference smaller than 1% between simulated and experimental results is obtained. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly charged vesicles of the saturated anionic lipid dimyristoyl phosphatidylglycerol (DMPG) in low ionic strength medium exhibit a very peculiar thermo-structural behavior. Along a wide gel-fluid transition region, DMPG dispersions display several anomalous characteristics, like low turbidity, high electrical conductivity and viscosity. Here, static and dynamic light scattering (SLS and DLS) were used to characterize DMPG vesicles at different temperatures. Similar experiments were performed with the largely studied zwitterionic lipid dimyristoyl phosphatidylcholine (DMPC). SLS and DLS data yielded similar dimensions for DMPC vesicles at all studied temperatures. However, for DMPG, along the gel-fluid transition region, SLS indicated a threefold increase in the vesicle radius of gyration, whereas the hydrodynamic radius, as obtained from DLS, increased 30% only. Despite the anomalous increase in the radius of gyration, DMPG lipid vesicles maintain isotropy, since no light depolarization was detected. Hence, SLS data are interpreted regarding the presence of isotropic vesicles within the DMPG anomalous transition, but highly perforated vesicles, with large holes. DLS/SLS discrepancy along the DMPG transition region is discussed in terms of the interpretation of the Einstein-Stokes relation for porous vesicles. Therefore, SLS data are shown to be much more appropriate for measuring porous vesicle dimensions than the vesicle diffusion coefficient. The underlying nanoscopic process which leads to the opening of pores in charged DMPG bilayer is very intriguing and deserves further investigation. One could envisage biotechnological applications, with vesicles being produced to enlarge and perforate in a chosen temperature and/or pH value. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The opto(electrical) properties and theoretical calculations of polyazomethine with vinylene and phenantridine moieties in the main chain were investigated in the present study. 2,5-Bis(hexyloxy)-1,4-bis[(2,5-bis(hexyloxy)-4-formyl-phenylenevinylene]benzene was polymerized in solution with 3,8-diamino-6-phenylphenanthridine (PAZ-PV-Ph). The temperatures of 5% weight loss (T-5%) of the polyazomethine was observed at 356 degrees C in nitrogen. Electrochemical properties of thin film of the polymer were studied by differential pulse voltammetry. The HOMO level of the PAZ-PV-Ph was at -4.97 eV. The energy band gap (E-g) was detected of approximately similar to 1.9 eV. Energy band gap (E-gopt) was additionally calculated from absorption spectrum and absorption coefficient alpha. The absorption UV-vis spectra of polyazomethine recorded in solution showed a blue shift in comparison with the solid state. HOMO-LUMO levels and E-g were additionally calculated theoretically by density functional theory and molecular simulations of PAZ-PV-Ph are presented. Current density-voltage (J-U) measurements were performed on ITO/PAZ-PV-Ph/Al, ITO/TiO2/PAZ-PV-Ph/Al and ITO/PEDOT/PAZ-PV-Ph:TiO2/Al devices in the dark and during irradiation with light (under illumination of 1000 W m(-2)). The polymer was tested using AFM technique and roughness (R-a, R-ms) along with skew and kurtosis are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CHARACTERIZATION OF REGOSOLS IN THE SEMIARID REGION OF PERNAMBUCO, BRAZIL Studies on soil characterization in unexplored regions, besides the generation of data banks for the soil classes of the country, also produce scientific information about soil properties, important for the development of good management practices and sustainable land use. One of the main soil classes in the semiarid region of Pernambuco State, the Regosols, cover about 27 % of the state area, and are used mainly for family agriculture. Due to different geological and climatic aspects Regosols with different chemical, physical and mineralogical properties are found in Pernambuco, which were characterized for the semiarid region of the State. Five Regosol profiles were selected in different regions of the State (P1=Sao Caetano; P2=Lagoa do Ouro; P3=Caetes; P4=Sao Joao; P5=Parnamirim). The soils were morphologically characterized and samples collected from all horizons and the bedrock. Routine physical and chemical analyses were carried out for soil classification of all samples and mineralogical analyses of the coarse fractions (gravel and sand) by optical microscopy and of the silt and clay fractions by X ray diffraction (XRD), as well as petrographic analyses of the rock samples. The results showed similarities between the soils, with a low degree of pedogenetic development, varying from medium to very deep, with the horizon sequence A-AC-C-Cr and a sandy to sandy loam texture. In the deeper layers of two profiles (P1 and P5), a solodic character was observed. Organic matter and available phosphorus content were low in all studied soils. Despite the low levels of exchangeable cations, all soil profiles showed high base saturation. The mineralogical composition of gravel, sand and silt fractions consisted, essentially, of quartz, followed by feldspars and mica, supporting the results of the petrographic analysis of the bedrock. Kaolinite was the main clay mineral in all studied profiles and horizons, indicating an important monosialitization process in autochthonous soils of a typical semiarid region. In soil profile P2, at a lower landscape position, smectite minerals were observed, with mixing phases of montmorillonite, beidelite or nontronite, indentified by the Greene-Kelly test in the DRX analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Particulate systems are well known to be able to deliver drugs with high efficiency and fewer adverse side effects, possibly by endocytosis of the drug carriers. On the other hand, cationic compounds and assemblies exhibit a general antimicrobial action. In this work, cationic nanoparticles built from drug, cationic lipid and polyelectrolytes are shown to be excellent and active carriers of amphotericin B against C. albicans. Results Assemblies of amphotericin B and cationic lipid at extreme drug to lipid molar ratios were wrapped by polyelectrolytes forming cationic nanoparticles of high colloid stability and fungicidal activity against Candida albicans. Experimental strategy involved dynamic light scattering for particle sizing, zeta-potential analysis, colloid stability, determination of AmB aggregation state by optical spectra and determination of activity against Candida albicans in vitro from cfu countings. Conclusion Novel and effective cationic particles delivered amphotericin B to C. albicans in vitro with optimal efficiency seldom achieved from drug, cationic lipid or cationic polyelectrolyte in separate. The multiple assembly of antibiotic, cationic lipid and cationic polyelctrolyte, consecutively nanostructured in each particle produced a strategical and effective attack against the fungus cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we propose the use of experimental and theoretical reflectance anisotropy spectra (RAS) as a new tool to identify structural and dynamical aspects of the bilipid membrane and its various constituent molecules. The role of geometric details at the atomic level and macroscopic quantities, such as the membrane curvature and tilt for the different gel phases, in the theoretical RAS spectra (using Kohn-Sham density functional theory (KS-DFT)) are presented. Then the results are compared to the experimentally measured spectra taken from other techniques.