10 resultados para olfactory nervous system
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
To report the audiological outcomes of cochlear implantation in two patients with severe to profound sensorineural hearing loss secondary to superficial siderosis of the CNS and discuss some programming peculiarities that were found in these cases. Retrospective review. Data concerning clinical presentation, diagnosis and audiological assessment pre- and post-implantation were collected of two patients with superficial siderosis of the CNS. Both patients showed good hearing thresholds but variable speech perception outcomes. One patient did not achieve open-set speech recognition, but the other achieved 70% speech recognition in quiet. Electrical compound action potentials could not be elicited in either patient. Map parameters showed the need for increased charge. Electrode impedances showed high longitudinal variability. The implants were fairly beneficial in restoring hearing and improving communication abilities although many reprogramming sessions have been required. The hurdle in programming was the need of frequent adjustments due to the physiologic variations in electrical discharges and neural conduction, besides the changes in the impedances. Patients diagnosed with superficial siderosis may achieve limited results in speech perception scores due to both cochlear and retrocochlear reasons. Careful counseling about the results must be given to the patients and their families before the cochlear implantation indication.
Resumo:
The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[C-14]-pyruvate into glycerol-TAG. The denervation provokes a reduction (similar to 70%) in the NE content of WAT in fasted, diabetic and HP diet-fed rats. The denervation induced an increase in WAT glucose uptake of fed, fasted, diabetic and HP diet-fed rats (40%, 60%, 3.2 fold and 35%, respectively). TAG-glycerol synthesis from pyruvate was reduced by denervation in adipocytes of fed (58%) and fasted (36%), saline-treated (58%) and diabetic (23%), and HP diet-fed rats (11%). In these same groups the denervation reduced the PEPCK mRNA expression (75%-95%) and the PEPCK activity (35%-60%). The denervation caused a similar to 35% decrease in GyK activity of control rats and a further similar to 35% reduction in the already low enzyme activity of fasted, diabetic and HP diet-fed rats. These data suggest that the SNS plays an important role in modulating G3P generating pathways in WAT, in situations where insulin levels are low. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Introduction: Several presentations of neurologic complications caused by JC virus (JCV) in human immunodeficiency virus (HIV)-infected patients have been described and need to be distinguished from the "classic" form of progressive multifocal leukoencephalopathy (PML). The objectives of this study were: 1) to describe the spectrum and frequency of presentations of JCV-associated central nervous system (CNS) diseases; 2) identify factors associated with in-hospital mortality of patients with JCV-associated CNS disease; and 3) to estimate the overall mortality of this population. Material and methods: This was a retrospective study of HIV-infected patients admitted consecutively for JCV-associated CNS diseases in a referral teaching center in Sao Paulo, Brazil, from 2002 to 2007. All patients with laboratory confirmed JCV-associated CNS diseases were included using the following criteria: compatible clinical and radiological features associated with the presence of JCV DNA in the cerebrospinal fluid. JCV-associated CNS diseases were classified as follows: 1) classic PML; 2) inflammatory PML; and 3) JC virus granule cell neuronopathy (GCN). Results: We included 47 cases. JCV-associated CNS diseases were classified as follows: 1) classic PML: 42 (89%); 2) inflammatory PML: three (6%); and 3) JC virus GCN: four (9%). Nosocomial pneumonia (p = 0.003), previous diagnosis of HIV infection (p = 0.03), and imaging showing cerebellar and/or brainstem involvement (p = 0.02) were associated with in-hospital mortality. Overall mortality during hospitalization was 34%. Conclusions: Novel presentations of JCV-associated CNS diseases were observed in our setting; nosocomial pneumonia, previous diagnosis of HIV infection, and cerebellar and/or brainstem involvement were associated with in-hospital mortality; and overall mortality was high. (C) 2012 Elsevier Editora Ltda. All rights reserved.
Central nervous system of Rhipicephalus sanguineus ticks (Acari: Ixodidae): an ultrastructural study
Resumo:
This study performed the ultrastructural description of the synganglion of Rhipicephalus sanguineus males and females, aiming to contribute to the understanding of the cellular organization of this organ. The results show that the central nervous system of these individuals consists of a mass of fused nerves, named synganglion, from where nerves emerge towards several parts of the body. It is surrounded by the neural lamella, a uniform and acellular layer, constituted by repeated layers of homogeneous and finely granular material. The perineurium is just below, composed of glial cells, which extensions invaginate throughout the nervous tissue. The synganglion is internally divided into an outer cortex, which contains the cellular bodies of the neural cells and an inner neuropile. The neural cells can be classified into two types according to cell size, cytoplasm-nucleus relation, and neurosecretory activity. Type I cells are oval or spherical and present a large nucleus occupying most part of the cytoplasm, which contains few organelles. Type 2 cells are polygonal, present a great cytoplasm volume, and their nuclei are located in the cell periphery. The cytoplasm of these cells contains a well-developed rough endoplasmic reticulum, Golgi regions, mitochondria, and several neurosecretory granules. The subperineurium and the tracheal ramifications are found between the cortex and the neuropile. The latter is formed mainly by neural fibers, tracheal elements, and glial cells. The results obtained show that R. sanguineus males' and females' nervous tissue present an ultrastructural organization similar to the one described in the literature for other tick species.
Resumo:
FAPESP [2009/13109-5]
Resumo:
This study reports on the successful use of magnetic albumin nanosphere (MAN), consisting of maghemite nanoparticles hosted by albumin-based nanosphere, to target different sites within the central nervous system (CNS). Ultrastructural analysis by transmission electron microscopy (TEM) of the material collected from the mice was performed in the time window of 30 minutes up to 30 days after administration. Evidence found that the administered MAN was initially internalized and transported by erythrocytes across the blood-brain-barrier and transferred to glial cells and neuropils before internalization by neurons, mainly in the cerebellum. We hypothesize that the efficiency of MAN in crossing the BBB with no pathological alterations is due to the synergistic effect of its two main components, the iron-based nanosized particles and the hosting albumin-based nanospheres. We found that the MAN in targeting the CNS represents an important step towards the design of nanosized materials for clinical and diagnostic applications.
Resumo:
There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.
Resumo:
Intranasal inoculation of equid herpesvirus type-1 (EHV-1) Brazilian strains A4/72 and A9/92 induced an acute and lethal infection in four different inbred mouse strains. Clinical and neurological signs appeared between the 2nd and 3rd day post inoculation (dpi) and included weight loss, ruffled fur, a hunched posture, crouching in corners, nasal and ocular discharges, dyspnoea, dehydration and increased salivation. These signs were followed by increased reactivity to external stimulation, seizures, recumbency and death. The virus was recovered consistently from the brain and viscera of all mice with neurological signs. Histopathological changes consisted of leptomeningitis, focal haemorrhage, ventriculitis, neuronal degeneration and necrosis, neuronophagia, non-suppurative inflammation, multifocal gliosis and perivascular infiltration of polymorphonuclear and mononuclear cells. Immunohistochemical examination demonstrated that EHV-1 strains A4/72 and A9/92 replicated in neurons of the olfactory bulb, the cortex and the hippocampus. In contrast, mice inoculated with the EHV-1 Brazilian strain A3/97 showed neither weight loss nor apparent clinical or neurological signs; however, the virus was recovered consistently from their lungs at 3 dpi. These three EHV-1 strains showed distinct degrees of virulence and tissue tropism in mice. EHV-1 strains A4/72 and A9/92 exhibited a high degree of central nervous system tropism with neuroinvasion and neurovirulence. EHV-1 strain A3/97 was not neurovirulent despite being detected in the brains of infected BALB/c nude mice. These findings indicate that several inbred mouse strains are susceptible to neuropathogenic EHV-1 strains and should be useful models for studying the pathogenesis and mechanisms contributing to EHV-induced myeloencephalopathy in horses. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Ferreira-Junior NC, Fedoce AG, Alves FHF, Correa FMA, Resstel LBM. Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB1 receptors. Am J Physiol Regul Integr Comp Physiol 302: R876-R885, 2012. First published December 28, 2011; doi: 10.1152/ajpregu.00330.2011.-Neural reflex mechanisms, such as the baroreflex, are involved in the regulation of cardiovascular system activity. Previous results from our group (Resstel LB, Correa FM. Medial prefrontal cortex NMDA receptors and nitric oxide modulate the parasympathetic component of the baroreflex. Eur J Neurosci 23: 481-488, 2006) have shown that glutamatergic synapses in the ventral portion of the medial prefrontal cortex (vMPFC) modulate baroreflex activity. Moreover, glutamatergic neurotransmission in the vMPFC can be modulated by the endocannabinoids system (eCBs), particularly the endocannabinoid anandamide, through presynaptic CB1 receptor activation. Therefore, in the present study, we investigated eCBs receptors that are present in the vMPFC, and more specifically whether CB1 receptors modulate baroreflex activity. We found that bilateral microinjection of the CB1 receptor antagonist AM251 (100 or 300 pmol/200 nl) into the vMPFC increased baroreflex activity in unanesthetized rats. Moreover, bilateral microinjection of either the anandamide transporter inhibitor AM404 (100 pmol/200 nl) or the inhibitor of the enzyme fatty acid amide hydrolase that degrades anandamide, URB597 (100 pmol/200 nl), into the MPFC decreased baroreflex activity. Finally, pretreatment of the vMPFC with an ineffective dose of AM251 (10 pmol/200 nl) was able to block baroreflex effects of both AM404 and URB597. Taken together, our results support the view that the eCBs in the vMPFC is involved in the modulation of baroreflex activity through the activation of CB1 receptors, which modulate local glutamate release.
Resumo:
PURPOSE: To evaluate the effect of inspiratory muscle training (IMT) on cardiac autonomic modulation and on peripheral nerve sympathetic activity in patients with chronic heart failure (CHF). METHODS: Functional capacity, low-frequency (LF) and high-frequency (HF) components of heart rate variability, muscle sympathetic nerve activity inferred by microneurography, and quality of life were determined in 27 patients with CHF who had been sequentially allocated to 1 of 2 groups: (1) control group (with no intervention) and (2) IMT group. Inspiratory muscle training consisted of respiratory exercises, with inspiratory threshold loading of seven 30-minute sessions per week for a period of 12 weeks, with a monthly increase of 30% in maximal inspiratory pressure (PImax) at rest. Multivariate analysis was applied to detect differences between baseline and followup period. RESULTS: Inspiratory muscle training significantly increased PImax (59.2 +/- 4.9 vs 87.5 +/- 6.5 cmH(2)O, P = .001) and peak oxygen uptake (14.4 +/- 0.7 vs 18.9 +/- 0.8 mL.kg(-1).min(-1), P = .002); decreased the peak ventilation (V. E) +/- carbon dioxide production (V-CO2) ratio (35.8 +/- 0.8 vs 32.5 +/- 0.4, P = .001) and the (V) over dotE +/-(V) over dotCO(2) slope (37.3 +/- 1.1 vs 31.3 +/- 1.1, P = .004); increased the HF component (49.3 +/- 4.1 vs 58.4 +/- 4.2 normalized units, P = .004) and decreased the LF component (50.7 +/- 4.1 vs 41.6 +/- 4.2 normalized units, P = .001) of heart rate variability; decreased muscle sympathetic nerve activity (37.1 +/- 3 vs 29.5 +/- 2.3 bursts per minute, P = .001); and improved quality of life. No significant changes were observed in the control group. CONCLUSION: Home-based IMT represents an important strategy to improve cardiac and peripheral autonomic controls, functional capacity, and quality of life in patients with CHF.