3 resultados para ocean energy

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the daily morphological responses of Sununga Beach, an embayed beach located on the south-eastern Brazilian coast, to storms in the South Atlantic Ocean. The main mechanisms and timing of beach erosion and accretion, the relationship between wave height and direction, and beach volume changes are considered, to establish a qualitative model for short-term embayed beach morphological changes. The methodology consisted of daily topographic surveys during the month of May in 2001, 2002, and 2003, using an RTK-GPS (real-time kinematics global positioning system). Weather and wave model results were used to correlate hydrodynamics and beach morphology. The results indicate that the morphodynamics of Sununga Beach are characterized by a process of beach rotation, which occurred more or less clearly during all three surveys. Unlike what has been commonly described in the literature for longer time intervals and alternations of fair and stormy weather, the beach rotation processes on Sununga Beach occurred under conditions of moderate-to-high wave energy change (wave heights greater than 2 m). An integrated evaluation of the behaviour of the meteorological aspects, together with beach morphology, enabled us to recognize that extra-tropical cyclones were the most important agent in remobilizing the beach planform, whether in beach rotation or in cross-shore erosion. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study analyzes important aspects of the tropical Atlantic Ocean from simulations of the fourth version of the Community Climate System Model (CCSM4): the mean sea surface temperature (SST) and wind stress, the Atlantic warm pools, the principal modes of SST variability, and the heat budget in the Benguela region. The main goal was to assess the similarities and differences between the CCSM4 simulations and observations. The results indicate that the tropical Atlantic overall is realistic in CCSM4. However, there are still significant biases in the CCSM4 Atlantic SSTs, with a colder tropical North Atlantic and a hotter tropical South Atlantic, that are related to biases in the wind stress. These are also reflected in the Atlantic warm pools in April and September, with its volume greater than in observations in April and smaller than in observations in September. The variability of SSTs in the tropical Atlantic is well represented in CCSM4. However, in the equatorial and tropical South Atlantic regions, CCSM4 has two distinct modes of variability, in contrast to observed behavior. A model heat budget analysis of the Benguela region indicates that the variability of the upper-ocean temperature is dominated by vertical advection, followed by meridional advection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new Community Climate System Model, version 4 (CCSM4), provides a powerful tool to understand and predict the earth's climate system. Several aspects of the Southern Ocean in the CCSM4 are explored, including the surface climatology and interannual variability, simulation of key climate water masses (Antarctic Bottom Water, Subantarctic Mode Water, and Antarctic Intermediate Water), the transport and structure of the Antarctic Circumpolar Current, and interbasin exchange via the Agulhas and Tasman leakages and at the Brazil-Malvinas Confluence. It is found that the CCSM4 has varying degrees of accuracy in the simulation of the climate of the Southern Ocean when compared with observations. This study has identified aspects of the model that warrant further analysis that will result in a more comprehensive understanding of ocean-atmosphere-ice dynamics and interactions that control the earth's climate and its variability.