36 resultados para nuclear structure, Helium, polarization observables, nuclear physics

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High precision elastic and inelastic angular distributions have been measured for the O-16 + Al-27 system at a beam energy of 100 MeV. The data analysis confirms a rainbow formation as already predicted by parameter-free Coupled Channel calculations. It also helps to reveal the crucial role of inelastic couplings in the rainbow formation for heavier systems even at energies far above the Coulomb barrier. This feature, well known in atomic/molecular scattering, is experimentally studied for the first time in Nuclear Physics. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear astrophysics is a relatively young science; it is about half a century old. It is a multidisciplinary subject, since it combines nuclear physics with astrophysics and observations in astronomy. It also addresses fundamental issues in astrobiology through the formation of elements, in particular those required for a carbon-based life. In this paper, a rapid overview of nucleosynthesis is given, mainly from the point of view of nuclear physics. A short historical introduction is followed by the definition of the relevant nuclear parameters, such as nuclear reaction cross sections, astrophysical S-factors, the energy range defined by the Gamow peak and reaction rates. The different astrophysical scenarios that are the sites of nucleosynthesis, and different processes, cycles and chains that are responsible for the building of complex nuclei from the elementary hydrogen nuclei are then briefly described. Received 28 February 2012, accepted 5 April 2012, first published online 9 May 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Heavy-flavor production in p + p collisions is a good test of perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p + p results, quantified with the nuclear-modification factor (R-AA), provides information on both cold-and hot-nuclear-matter effects. Midrapidity heavy-flavor R-AA measurements at the Relativistic Heavy Ion Collider have challenged parton-energy-loss models and resulted in upper limits on the viscosity-entropy ratio that are near the quantum lower bound. Such measurements have not been made in the forward-rapidity region. Purpose: Determine transverse-momentum (p(T)) spectra and the corresponding R-AA for muons from heavy-flavor meson decay in p + p and Cu + Cu collisions at root s(NN) = 200 GeV and y = 1.65. Method: Results are obtained using the semileptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p(T) spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p + p collisions at root s = 200 GeV, integrated over p(T) and in the rapidity range 1.4 < y < 1.9, is found to be d(sigma e (e) over bar)/dy = 0.139 +/- 0.029 (stat)(-0.058)(+0.051) (syst) mb. This result is consistent with a perturbative fixed-order-plus-next-to-leading-log calculation within scale uncertainties and is also consistent with expectations based on the corresponding midrapidity charm-production cross section measured by PHENIX. The R-AA for heavy-flavor muons in Cu + Cu collisions is measured in three centrality bins for 1 < p(T) < 4 GeV/c. Suppression relative to binary-collision scaling (R-AA < 1) increases with centrality. Conclusions: Within experimental and theoretical uncertainties, the measured charm yield in p + p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu + Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the breakup of the proton halo B-8 projectile in the presence of the light target C-12 at near barrier energies. Our calculations show that the effect of the breakup on the elastic scattering angular distributions is negligible. We also investigate the relative importance of Coulomb and nuclear breakups for this system. We compare the results of our calculations with those for the He-6 + C-12 and B-8 Ni-58 systems. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The level structures of the N = 50 As-83, Ge-82, and Ga-81 isotones have been investigated by means of multi-nucleon transfer reactions. A first experiment was performed with the CLARA PRISMA setup to identify these nuclei. A second experiment was carried out with the GASP array in order to deduce the gamma-ray coincidence information. The results obtained on the high-spin states of such nuclei are used to test the stability of the N = 50 shell closure in the region of Ni-78 (Z = 28). The comparison of the experimental level schemes with the shell-model calculations yields an N = 50 energy gap value of 4.7(3) MeV at Z = 28. This value, in a good agreement with the prediction of the finite-range liquid-drop model as well as with the recent large-scale shell model calculations, does not support a weakening of the N = 50 shell gap down to Z = 28. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d + Au and p + p collisions at root S-NN = 200 GeV in the transverse-momentum range 0.85 <= p(T)(e) <= 8.5 GeV/c. In central d + Au collisions, the nuclear modification factor R-dA at 1.5 < p(T) < 5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p + p collisions, and shows that the mass-dependent Cronin enhancement observed at the Relativistic Heavy Ion Collider extends to the heavy D meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the pi(0) and heavy-flavor-electron nuclear modification factors R-AA. DOI: 10.1103/PhysRevLett.109.242301

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p + p collisions at root s = 62.4 GeV are presented. The PHENIX measurement of the cross sections for 1.0 < p(T) < 4.5 GeV/c are consistent with perturbative QCD calculations at next-to-leading order in the strong-coupling constant, alpha(s). Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 less than or similar to x(gluon) less than or similar to 0.2, is consistent with recent global parametrizations disfavoring large gluon polarization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alpha cluster phenomenon in the light nuclei structure has been the subject of a longtime investigation since the proposal of the Ikeda diagrams, however the mechanism of the cluster formation is still not completely understood. In fact, if the clusters have a fairly rigid crystal-like or a gas-like structure remains an open question. The interpretation of the Hoyle state as an α condensate brought a renewed interest to this subject, in particular to resonances analogous to the Hoyle state. In this context the study of the experimental evolution of the α-cluster phenomenon through (6Li,d) transfer reactions has been performed in São Paulo. Particularly important are the regions around the nα thresholds where the α-cluster structure states are predicted. The resonant states around the 4α threshold in the nucleus 16O are the focus of the present contribution. The 12C(6Li,d)16O reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. Resonant states above the α threshold were measured and an energy resolution of 15-30 keV allows to define states previously unresolved. The angular distributions of the absolute cross sections were determined in a range of 4-40 degree in the center of mass system and up to 17 MeV excitation energy. The upper limit for the resonance widths in the crucial region of the 4α threshold was obtained. These values revealed to be at least a factor three smaller than the ones previously reported in the literature, indicating that the α cluster structure information on this region should be revised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-particle azimuthal (Delta phi) and pseudorapidity (Delta eta) correlations using a trigger particle with large transverse momentum (p(T)) in d+Au, Cu+Cu, and Au+Au collisions at root s(NN) = 62.4 GeV and 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider are presented. The near-side correlation is separated into a jet-like component, narrow in both Delta phi and Delta eta, and the ridge, narrow in Delta phi but broad in Delta eta. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated p(T). The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at root s(NN) = 200 GeV, is also found in Cu+Cu collisions and in collisions at root s(NN) = 62.4 GeV, but is found to be substantially smaller at root s(NN) = 62.4 GeV than at root s(NN) = 200 GeV for the same average number of participants (< N-part >). Measurements of the ridge are compared to models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a short nontechnical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schrodinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schrodinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714352]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the mid-rapidity mass spectrum of di-electrons and cross sections of pseudoscalar and vector mesons via e(+) e(-) decays, from root s = 200 GeV p + p collisions, measured by the large-acceptance experiment STAR at the Relativistic Heavy Ion Collider. The ratio of the di-electron continuum to the combinatorial background is larger than 10% over the entire mass range. Simulations of di-electrons from light-meson decays and heavy-flavor decays (charmonium and open charm correlation) are found to describe the data. The extracted omega -> e(+) e(-) invariant yields are consistent with previous measurements. The mid-rapidity yields (dN/dy) of phi and J/psi are extracted through their di-electron decay channels and are consistent with the previous measurements of phi -> K+ K- and J/psi -> e(+) e(-). Our results suggest a new upper limit of the branching ratio of the eta -> e(+) e(-) of 1.7 x 10(-5) at the 90% confidence level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The differential cross section for the production of direct photons in p + p collisions at root s = 200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive direct photons were measured in the transverse momentum range from 5: 5-25 GeV/c, extending the range beyond previous measurements. Event structure was studied with an isolation criterion. Next-to-leading-order perturbative-quantum-chromodynamics calculations give a good description of the spectrum. When the cross section is expressed versus x(T), the PHENIX data are seen to be in agreement with measurements from other experiments at different center-of-mass energies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the DPP approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of Li-7 followed by the breakup of Li-6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate how the initial geometry of a heavy-ion collision is transformed into final flow observables by solving event-by-event ideal hydrodynamics with realistic fluctuating initial conditions. We study quantitatively to what extent anisotropic flow (nu(n)) is determined by the initial eccentricity epsilon(n) for a set of realistic simulations, and we discuss which definition of epsilon(n) gives the best estimator of nu(n). We find that the common practice of using an r(2) weight in the definition of epsilon(n) in general results in a poorer predictor of nu(n) than when using r(n) weight, for n > 2. We similarly study the importance of additional properties of the initial state. For example, we show that in order to correctly predict nu(4) and nu(5) for noncentral collisions, one must take into account nonlinear terms proportional to epsilon(2)(2) and epsilon(2)epsilon(3), respectively. We find that it makes no difference whether one calculates the eccentricities over a range of rapidity or in a single slice at z = 0, nor is it important whether one uses an energy or entropy density weight. This knowledge will be important for making a more direct link between experimental observables and hydrodynamic initial conditions, the latter being poorly constrained at present.