6 resultados para network-based intrusion detection system
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.
Resumo:
Glasses in the system [Na2S](2/3)[(B2S3)(x)(P2S5)(1-x)](1/3) (0.0 <= x <= 1.0) were prepared by the melt quenching technique, and their properties were characterized by thermal analysis and impedance spectroscopy. Their atomic-level structures were comprehensively characterized by Raman spectroscopy and B-11, P-31, and Na-23 high resolution solid state magic-angle spinning (MAS) NMR techniques. P-31 MAS NMR peak assignments were made by the presence or absence of homonuclear indirect P-31-P-31 spin-spin interactions as detected using homonuclear J-resolved and refocused INADEQUATE techniques. The extent of B-S-P connectivity in the glassy network was quantified by P-31{B-11} and B-11{P-31} rotational echo double resonance spectroscopy. The results clearly illustrate that the network modifier alkali sulfide, Na2S, is not proportionally shared between the two network former components, B and P. Rather, the thiophosphate (P) component tends to attract a larger concentration of network modifier species than predicted by the bulk composition, and this results in the conversion of P2S74-, pyrothiophosphate, Na/P = 2:1, units into PS43-, orthothiophosphate, Na/P = 3:1, groups. Charge balance is maintained by increasing the net degree of polymerization of the thioborate (B) units through the formation of covalent bridging sulfur (BS) units, B S B. Detailed inspection of the B-11 MAS NMR spectra reveals that multiple thioborate units are formed, ranging from neutral BS3/2 groups all the way to the fully depolymerized orthothioborate (BS33-) species. On the basis of these results, a comprehensive and quantitative structural model is developed for these glasses, on the basis of which the compositional trends in the glass transition temperatures (T-g) and ionic conductivities can be rationalized. Up to x = 0.4, the dominant process can be described in a simplified way by the net reaction equation P-1 + B-1 reversible arrow P-0 + B-4, where the superscripts denote the number of BS atoms for the respective network former species. Above x = 0.4, all of the thiophosphate units are of the P-0 type and both pyro-(B-1) and orthothioborate (B-0) species make increasing contributions to the network structure with increasing x. In sharp contrast to the situation in sodium borophosphate glasses, four-coordinated thioborate species are generally less abundant and heteroatomic B-S-P linkages appear to not exist. On the basis of this structural information, compositional trends in the ionic conductivities are discussed in relation to the nature of the charge-compensating anionic species and the spatial distribution of the charge carriers.
Resumo:
Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.
Resumo:
Background: In epidemiological surveys, a good reliability among the examiners regarding the caries detection method is essential. However, training and calibrating those examiners is an arduous task because it involves several patients who are examined many times. To facilitate this step, we aimed to propose a laboratory methodology to simulate the examinations performed to detect caries lesions using the International Caries Detection and Assessment System (ICDAS) in epidemiological surveys. Methods: A benchmark examiner conducted all training sessions. A total of 67 exfoliated primary teeth, varying from sound to extensive cavitated, were set in seven arch models to simulate complete mouths in primary dentition. Sixteen examiners (graduate students) evaluated all surfaces of the teeth under illumination using buccal mirrors and ball-ended probe in two occasions, using only coronal primary caries scores of the ICDAS. As reference standard, two different examiners assessed the proximal surfaces by direct visual inspection, classifying them in sound, with non-cavitated or with cavitated lesions. After, teeth were sectioned in the bucco-lingual direction, and the examiners assessed the sections in stereomicroscope, classifying the occlusal and smooth surfaces according to lesion depth. Inter-examiner reproducibility was evaluated using weighted kappa. Sensitivities and specificities were calculated at two thresholds: all lesions and advanced lesions (cavitated lesions in proximal surfaces and lesions reaching the dentine in occlusal and smooth surfaces). Conclusion: The methodology purposed for training and calibration of several examiners designated for epidemiological surveys of dental caries in preschool children using the ICDAS is feasible, permitting the assessment of reliability and accuracy of the examiners previously to the survey´s development.
Resumo:
To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.