6 resultados para natural regeneration

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O estudo buscou avaliar diferenças florísticas e estruturais entre os componentes adulto e regenerante de trecho de Floresta Ombrófila Mista em Campos do Jordão, a fim de levantar hipóteses sobre sua trajetória sucessional. Para amostragem do componente adulto (CAP > 15 cm) foram instaladas 50 parcelas permanentes de 10 × 20 m e, em cada uma dessas, cinco subparcelas de 1 × 1 m para amostragem do componente regenerante (h > 30 cm e CAP < 15 cm). No componente adulto foram amostrados 1.770 indivíduos, distribuídos em 58 espécies, 38 gêneros e 26 famílias (H' = 3,08 e J = 0,73). Já entre os regenerantes foram observados 576 indivíduos, 55 espécies, 39 gêneros e 23 famílias (H' = 3,41 e J = 0,84). Constatou-se que são necessárias ações de manejo para a conservação in situ das coníferas locais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work it was hypothesized that secondary succession on sites that have been managed by single planting of mangrove species is compromised by residual stressors, which could reduce the ecosystem's structural development and lower its functions. Forest structure and environmental characteristics of three planted mangrove stands are compared with reference sites. Structural attributes showed significant differences in the comparison of planted and reference stands. Avicennia schaueriana was the dominant species within both natural regeneration and old-growth stands in terms of basal area (99.2 and 99.4 %, 69.6 and 84.5 %, and 59.0 and 87.1 % for Itacorubi, Saco Grande, and Ratones, respectively). Restoration stands were dominated by Laguncularia racemosa (80.6 and 94.2 % for Saco Grande and Ratones, respectively), except at one site (Itacorubi), where A. schaueriana prevailed (99.7 %). Even though restoration and regeneration stands at Itacorubi showed similar species composition and dominance, cohort sorting revealed an inferior regeneration potential in the restoration stand. Multiple correlation analysis indicated that variables related to elevation disruptions (p (w) = 0.521) were the environmental drivers responsible for the differences observed in forest structure. At restoration sites an impaired pattern of secondary succession was observed, indicating that single species plantings may be ineffective if characteristics of the site, as well as of the area surrounding it, are not considered. The inadequate management of restoration sites can therefore have implications for both immediate and long-term large-scale ecosystem services.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: To evaluate the capacity of natural latex membrane to accelerate and improve the regeneration quality of the of rat sciatic nerves. METHODS: Forty male adult Wistar rats were used, anesthetized and operated to cut the sciatic nerve and receive an autograft or a conduit made with a membrane derived from natural latex (Hevea brasiliensis). Four or eight weeks after surgery, to investigate motor nerve recovery, we analyzed the neurological function by walking pattern (footprints analysis and computerized treadmill), electrophysiological evaluation and histological analysis of regenerated nerve (autologous nerve graft or tissue cables between the nerve stumps), and anterior tibial and gastrocnemius muscles. RESULTS: All functional and morphological analysis showed that the rats transplanted with latex conduit had a better neurological recovery than those operated with autologous nerve: quality of footprints, performance on treadmill (p<0.01), electrophysiological response (p<0.05), and quality of histological aspects on neural regeneration. CONCLUSION: The data reported showed behavioral and functional recovery in rats implanted with latex conduit for sciatic nerve repair, supporting a complete morphological and physiological regeneration of the nerve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.