2 resultados para native fruit
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The Australian palm Archontophoenix cunninghamiana was introduced into Brazil as an ornamental species, and became a dangerous invader of remnant Atlantic forest patches, demanding urgent management actions that require careful planning. Its fruits are greatly appreciated by generalist birds and its sudden eradication could be as harmful as its permanence in the native community. Our hypothesis was that A. cunninghamiana phenology and fruit traits would have facilitated the invasion process. Hence the aim of the study was to characterize the reproductive phenology of the palm by registering flowering and fruiting events, estimating fruit production, and evaluating fruit nutritional levels. Phenological observations were carried out over 12 months and analyzed statistically. Fruit traits and production were estimated. Pulp nutritional levels were determined by analyzing proteins, lipids, and carbohydrates. Results showed constant flowering and fruiting throughout the year with a weak reproductive seasonality. On average, 3651 fruits were produced per bunch mainly in the summer. Fruit analysis revealed low nutrient contents, especially of proteins and lipids compared with other Brazilian native palm species. We concluded that the abundant fruit production all year round, and fruit attractivity mainly due to size and color, :may act positively on the reproductive performance and effective dispersion of A. cunninghamiana. As a management procedure which would add quality to frugivore food resources we suggest the replacement of A. cunninghamiana by the native palm Euterpe edulis, especially in gardens and parks near to Atlantic forest fragments.
Resumo:
The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees' body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee's body in the course of the flowering period of P alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production. Rev. Biol. Trop. 60 (4): 1553-1565. Epub 2012 December 01.