6 resultados para multi-stage fixed costs
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Fruit purees, combined or not with polysaccharides, have been used in some studies to elaborate edible films. The present study was conducted to evaluate tensile properties and water vapor barrier of alginate-acerola puree films plasticized with corn syrup, and to study the influence of cellulose whiskers from different origins (cotton fiber or coconut husk fiber, the latter submitted to one- or multi-stage bleaching) on the film properties. The whiskers improved the overall tensile properties (except by elongation) and the water vapor barrier of the films. The films with coconut whiskers, even those submitted only to a one-stage bleaching, presented similar properties to those of films with cotton whiskers, despite the low compatibility between the matrix and the remaining lignin in coconut whiskers. This was probably ascribed to a counterbalancing effect of the higher aspect ratios of the coconut whiskers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The SBBrasil 2010 Project (SBB10) was designed as a nationwide oral health epidemiological survey within a health surveillance strategy. This article discusses methodological aspects of the SBB10 Project that can potentially help expand and develop knowledge in the health field. This was a nationwide survey with stratified multi-stage cluster sampling. The sample domains were 27 State capitals and 150 rural municipalities (counties) from the country's five major geographic regions. The sampling units were census tracts and households for the State capitals and municipalities, census tracts, and households for the rural areas. Thirty census tracts were selected in the State capitals and 30 municipalities in the countryside. The precision considered the demographic domains grouped by density of the overall population and the internal variability of oral health indices. The study evaluated dental caries, periodontal disease, malocclusion, fluorosis, tooth loss, and dental trauma in five age groups (5, 12, 15-19, 35-44, and 65-74 years).
Resumo:
Batch combustion of fixed beds of coal, bagasse and blends thereof took place in a pre-heated two-stage electric laboratory furnace, under high-heating rates. The average input fuel/air equivalence ratios were similar for all fuels. The primary and secondary furnace temperatures were varied from 800 degrees C to 1000 degrees C. The effects of fuel blending, combustion staging, and operating furnace temperatures on the emissions from the two fuels were assessed. Furnace effluents were analyzed for carbon dioxide and for products of incomplete combustion (PIC) including CO, volatile and semi-volatile hydrocarbons, as well as particulate matter. Results showed that whereas CO2 was generated during both the observed sequential volatile matter and char combustion phases of the fuels, PICs were only generated during the volatile matter combustion phase. CO2 emissions were the highest from coal, whereas CO and other PIC emissions were the highest from bagasse. Under this particular combustion configuration, combustion of the volatile matter of the blends resulted in lower yields of PIC, than combustion of the volatiles of the neat fuels. Though CO and unburned hydrocarbons from coal as well as from the blends did not exhibit a clear trend with furnace temperature, such emissions from bagasse clearly increased with temperature. The presence of the secondary furnace (afterburner) typically reduced PIC, by promoting further oxidation of the primary furnace effluents. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An optimal control strategy for the highly active antiretroviral therapy associated to the acquired immunodeficiency syndrome should be designed regarding a comprehensive analysis of the drug chemotherapy behavior in the host tissues, from major viral replication sites to viral sanctuary compartments. Such approach is critical in order to efficiently explore synergistic, competitive and prohibitive relationships among drugs and, hence, therapy costs and side-effect minimization. In this paper, a novel mathematical model for HIV-1 drug chemotherapy dynamics in distinct host anatomic compartments is proposed and theoretically evaluated on fifteen conventional anti-retroviral drugs. Rather than interdependence between drug type and its concentration profile in a host tissue, simulated results suggest that such profile is importantly correlated with the host tissue under consideration. Furthermore, the drug accumulative dynamics are drastically affected by low patient compliance with pharmacotherapy, even when a single dose lacks. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The design and implementation of a new control scheme for reactive power compensation, voltage regulation and transient stability enhancement for wind turbines equipped with fixed-speed induction generators (IGs) in large interconnected power systems is presented in this study. The low-voltage-ride-through (LVRT) capability is provided by extending the range of the operation of the controlled system to include typical post-fault conditions. A systematic procedure is proposed to design decentralised multi-variable controllers for large interconnected power systems using the linear quadratic (LQ) output-feedback control design method and the controller design procedure is formulated as an optimisation problem involving rank-constrained linear matrix inequality (LMI). In this study, it is shown that a static synchronous compensator (STATCOM) with energy storage system (ESS), controlled via robust control technique, is an effective device for improving the LVRT capability of fixed-speed wind turbines.
Resumo:
This study reports the performance of a combined anaerobic-aerobic packed-bed reactor that can be used to treat domestic sewage. Initially, a bench-scale reactor was operated in three experimental phases. In the first phase, the anaerobic reactor was operated with an average organic matter removal efficiency of 77% for a hydraulic retention time (HRT) of 10 h. In the second phase, the reactor was operated with an anaerobic stage followed by an aerobic zone, resulting in a mean value of 91% efficiency. In the third and final phase, the anaerobic-aerobic reactor was operated with recirculation of the effluent of the reactor through the anaerobic zone. The system yielded mean total nitrogen removal percentages of 65 and 75% for recycle ratios (r) of 0.5 and 1.5, respectively, and the chemical oxygen demand (COD) removal efficiencies were higher than 90%. When the pilot-scale reactor was operated with an HRT of 12 h and r values of 1.5 and 3.0, its performance was similar to that observed in the bench-scale unit (92% COD removal for r = 3.0). However, the nitrogen removal was lower (55% N removal for r = 3.0) due to problems with the hydrodynamics in the aerobic zone. The anaerobic-aerobic fixed-bed reactor with recirculation of the liquid phase allows for concomitant carbon and nitrogen removal without adding an exogenous source of electron donors and without requiring any additional alkalinity supplementation.