12 resultados para modern physics

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This is a short nontechnical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An overview is given of the limitations of Luttinger liquid theory in describing the real time equilibrium dynamics of critical one-dimensional systems with nonlinear dispersion relation. After exposing the singularities of perturbation theory in band curvature effects that break the Lorentz invariance of the Tomonaga-Luttinger model, the origin of high frequency oscillations in the long time behaviour of correlation functions is discussed. The notion that correlations decay exponentially at finite temperature is challenged by the effects of diffusion in the density-density correlation due to umklapp scattering in lattice models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we present an agent-based model for the spread of tuberculosis where the individuals can be infected with either drug-susceptible or drug-resistant strains and can also receive a treatment. The dynamics of the model and the role of each one of the parameters are explained. The whole set of parameters is explored to check their importance in the numerical simulation results. The model captures the beneficial impact of the adequate treatment on the prevalence of tuberculosis. Nevertheless, depending on the treatment parameters range, it also captures the emergence of drug resistance. Drug resistance emergence is particularly likely to occur for parameter values corresponding to less efficacious treatment, as usually found in developing countries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the nonequilibrium roughening transition of a one-dimensional restricted solid-on-solid model by directly sampling the stationary probability density of a suitable order parameter as the surface adsorption rate varies. The shapes of the probability density histograms suggest a typical Ginzburg-Landau scenario for the phase transition of the model, and estimates of the "magnetic" exponent seem to confirm its mean-field critical behavior. We also found that the flipping times between the metastable phases of the model scale exponentially with the system size, signaling the breaking of ergodicity in the thermodynamic limit. Incidentally, we discovered that a closely related model not considered before also displays a phase transition with the same critical behavior as the original model. Our results support the usefulness of off-critical histogram techniques in the investigation of nonequilibrium phase transitions. We also briefly discuss in the appendix a good and simple pseudo-random number generator used in our simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a two-parameter family of Z(2) gauge theories on a lattice discretization T(M) of a three-manifold M and its relation to topological field theories. Familiar models such as the spin-gauge model are curves on a parameter space Gamma. We show that there is a region Gamma(0) subset of Gamma where the partition function and the expectation value h < W-R(gamma)> i of the Wilson loop can be exactly computed. Depending on the point of Gamma(0), the model behaves as topological or quasi-topological. The partition function is, up to a scaling factor, a topological number of M. The Wilson loop on the other hand, does not depend on the topology of gamma. However, for a subset of Gamma(0), < W-R(gamma)> depends on the size of gamma and follows a discrete version of an area law. At the zero temperature limit, the spin-gauge model approaches the topological and the quasi-topological regions depending on the sign of the coupling constant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we discuss some ideas on how to define the concept of quasi-integrability. Our ideas stem from the observation that many field theory models are "almost" integrable; i.e. they possess a large number of "almost" conserved quantities. Most of our discussion will involve a certain class of models which generalize the sine-Gordon model in (1 + 1) dimensions. As will be mentioned many field configurations of these models look like those of the integrable systems and so appear to be close to those in integrable model. We will then attempt to quantify these claims looking in particular, both analytically and numerically, at field configurations with scattering solitons. We will also discuss some preliminary results obtained in other models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a toy del to analyze the consequences of dark matter interaction with a dark energy background on the overall rotation of galaxy clusters and the misalignment between their dark matter and baryon distributions when compared to ACDM predictions. The interaction parameters are found via a genetic algorithm search. The results obtained suggest that interaction is a basic phenomenon whose effects are detectable even in simple models of galactic dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use the QCD sum rules to study the recently observed charmonium-like structure Z+ c (3900) as a tetraquark state. We evaluate the three-point function and extract the coupling constants of the Z+ c J/ψ π+, Z+ c ηc ρ+ and Z+ c D+ ¯D∗0 vertices and the corresponding decay widths in these channels. The results obtained are in good agreement with the experimental data and supports to the tetraquark picture of this state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study, using the QCD sum rule framework, the possible existence of a charmed pentaquark that we call Θc(3250). In the QCD side we work at leading order in αs and consider condensates up to dimension 10. The mass obtained: mΘc = (3.21±0.13) GeV, is compatible with the mass of the structure seen by BaBar Collaboration in the decay channel B− →  ̄p Σ++ c π−π−.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After decades of successful hot big-bang paradigm, cosmology still lacks a framework in which the early inflationary phase of the universe smoothly matches the radiation epoch and evolves to the present “quasi” de Sitter spacetime. No less intriguing is that the current value of the effective vacuum energy density is vastly smaller than the value that triggered inflation. In this paper, we propose a new class of cosmologies capable of overcoming, or highly alleviating, some of these acute cosmic puzzles. Powered by a decaying vacuum energy density, the spacetime emerges from a pure nonsingular de Sitter vacuum stage, “gracefully” exits from inflation to a radiation phase followed by dark matter and vacuum regimes, and, finally, evolves to a late-time de Sitter phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the shear stress and angular momentum on the nonlinear spherical collapse model is discussed in the framework of the Einstein–de Sitter and ΛCDM models. By assuming that the vacuum component is not clustering within the homogeneous nonspherical overdensities, we show how the local rotation and shear affect the linear density threshold for collapse of the nonrelativistic component (δc) and its virial overdensity (ΔV ). It is also found that the net effect of shear and rotation in galactic scale is responsible for higher values of the linear overdensity parameter as compared with the standard spherical collapse model (no shear and rotation)