27 resultados para miniature fuel cell
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Membranes of Poly(2,5-benzimidazole) (ABPBI), prepared by polycondensation in polyphosphoric acid, were characterized from the fuel cell application point of view: mechanical properties of the membranes for different acid doping levels, thermal stability, permeability for the different gases/vapors susceptible of use in the cell (hydrogen, oxygen, methanol and ethanol), electro-osmotic water drag coefficient, oxidation stability to hydroxyl radicals, phosphoric acid leaching rate and, finally, in-plane membrane conductivity. ABPBI membranes presented an excellent thermal stability, above 500 degrees C in oxygen, suitable mechanical properties for high phosphoric acid doping levels, a low methanol and ethanol limiting permeation currents, and oxygen permeability compared to Nafion membranes, and a low phosphoric acid leaching rate when exposed to water vapor. On the contrary, hydrogen permeation current was higher than that of Nafion, and the chemical stability was very limited. Membrane conductivity achieved 0.07 S cm(-1) after equilibration with a humid environment. Fuel cell tests showed reasonable good performances, with a maximum power peak of 170 mW cm(-2) for H-2/air at 170 degrees C operating under a humidified hydrogen stream, 39.9 mW cm(-2) for CH3OH/O-2 at 200 degrees C for a methanol/water weight ratio of 1: 2, and 31.5 mW cm(-2) for CH3CH2OH/O-2 at the same conditions than for methanol. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.014207jes] All rights reserved.
Resumo:
The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A 20% Pt3Sn/C catalyst was prepared by reduction with formic acid and used in a direct ethanol fuel cell at low temperatures. The electro-catalytic activity of this bimetallic catalyst was compared to that of a commercial 20% Pt/C catalyst. The PtSn catalyst showed better results in the investigated temperature range (30 degrees-70 degrees C). Generally, Sn promotes ethanol oxidation by adsorption of OH species at considerably lower potentials compared to Pt, allowing the occurrence of a bifunctional mechanism. The bimetallic catalyst was physico-chemically characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The presence of SnO2 in the bulk and surface of the catalyst was observed. It appears that SnO2 can enhance the ethanol electro-oxidation activity at low potentials due to the supply of oxygen-containing species for the oxidative removal of CO and CH3CO species adsorbed on adjacent Pt active sites.
Resumo:
The effect of the relationship between particle size (d), inter-particle distance (x(i)), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x(i)/d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x(i)/d can be always obtained. For y >= 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x(i)/d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x(i)/d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x(i)/d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.
Resumo:
Carbon-supported Pt-based electrocatalysts were synthesized by Pechini method for the ethanol oxidation (EOR). Physicochemical characterizations were helpful to estimate the diameters of the obtained materials ranging from 2 nm to 5 nm. Main electrochemical experiments were carried out at 90 degrees C i.e. under the working conditions of performing the single 5 cm(2) direct ethanol fuel cell (DEFC). Pt(80)Sn(20)/C was the anode catalyst which has given the highest power density of 37 mW cm(-2). Importantly, the IR spectroscopy measurements associated with the qualitative analysis done at the output of the anodic compartment of the fuel cell have shown that ethanol oxidation on Pt(80)Sn(20)/C was mainly a two-electron sustainable process. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal: carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.
Resumo:
The performance of an ABPBI-based High Temperature H-2/O-2 PEMFC system was studied under different experimental conditions. Increasing the temperature from 130 to 170 degrees C improved the cell performance, even though further increase was not beneficial for the system. Humidification of the H-2 stream ameliorated this behaviour, even though operating above 170 degrees C is not advisable in terms of cell performance. A significant electrolyte dehydration seems to negatively affect the fuel cell performance, especially in the case of the anode. In the presence of 2% vol. CO in the H-2 stream, the temperature exerted a positive effect on the cell performance, reducing the strong adsorption of this poison on the platinum sites. Moreover, humidification of the H-2 + CO stream increased the maximum power densities of the cell, further alleviating the CO poisoning effects. Actual CO-O-2 fuel cell results confirmed the significant beneficial effect of the relative humidity on the kinetics of the CO oxidation process. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The effect of trace quantities of ammonia on oxygen reduction reaction (ORR) on carbon-supported platinum catalysts in perchloric acid solutions is assessed using rotating ring disk electrode (RRDE) technique. The study demonstrates that ammonia has detrimental effects on ORR. The most significant effect takes place in the potential region above 0.7 V vs RHE. The effect is explained by the electrochemical oxidation of ammonia, which blocks Pt active sites and increases the formation of H2O2. This leads to losses in the disk currents and increments in the ring currents. The apparent losses in ORR currents may occur in two ways, namely, through the blocking of the active sites for ORR as well as by generating a small anodic current, which is believed to have a lower contribution. In addition, a detrimental effect of sodium cations in the potential range below 0.75 V vs RHE was demonstrated. This effect is most likely due to the co-adsorption of sodium cations and perchlorate anions on the Pt surface. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Chitosan/poly(vinyl sulfonic acid) (PVS) films have been prepared on Nafion® membranes by the layer-by-layer (LbL) method for use in direct methanol fuel cell (DMFC). Computational methods and Fourier transform infrared (FTIR) spectra suggest that an ionic pair is formed between the sulfonic group of PVS and the protonated amine group of chitosan, thereby promoting the growth of LbL films on the Nafion® membrane as well as partial blocking of methanol. Chronopotentiometry and potential linear scanning experiments have been carried out for investigation of methanol crossover through the Nafion® and chitosan/PVS/Nafion® membranes in a diaphragm diffusion cell. On the basis of electrical impedance measurements, the values of proton resistance of the Nafion® and chitosan/PVS/Nafion® membranes are close due to the small thickness of the LbL film. Thus, it is expected an improved DMFC performance once the additional resistance of the self-assembled film is negligible compared to the result associated with the decrease in the crossover effect.
Resumo:
This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal:carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.
Resumo:
This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH2, PtO2, SnO2 and IrO2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded.
Resumo:
This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH2, PtO2, SnO2 and IrO2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded.
Resumo:
Hydrogen peroxide is a powerful oxidant that finds application in several areas, but most particularly in the treatment of industrial wastewaters. The aim of the present study was to investigate the effects of applied potential and electrolyte flow conditions on the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor with a gas diffusion electrode (GDE). The electrolyses were performed in an aqueous acidic medium using a GDE constructed with conductive black graphite and polytetrafluoroethylene (80:20 w/w). Under laminar flow conditions (flow rate = 50 L/h), hydrogen peroxide was formed in a maximum yield of 414 mg/L after 2 h at -2.25 V vs Pt //Ag/AgCl (global rate constant = 3.1 mg/(L min); energy consumption = 22.1 kWh/kg). Under turbulent flow (300 L/h), the maximum yield obtained was 294 mg/L after 2 h at -1.75 V vs Pt//Ag/AgCl (global rate constant = 2.5 mg/ (L min); energy consumption = 30.1 kWh/kg).
Resumo:
Although somatic cell nuclear transfer (SCNT) is a promising tool, its potential use is hampered by the high mortality rates during the development to term of cloned offspring. Abnormal epigenetic reprogramming of donor nuclei after SCNT is thought to be the main cause of this low efficiency. We hypothesized that chromatin-modifying agents (CMAs) targeting chromatin acetylation and DNA methylation could alter the chromatin configuration and turn them more amenable to reprogramming. Thus, bovine fibroblasts were treated with 5-aza-2'-deoxycytidine (AZA) plus trichostatin (TSA) or hydralazine (HH) plus valproic acid (VPA) whereas, in another trial, cloned bovine zygotes were treated with TSA. The treatment of fibroblasts with either AZA + TSA or HH + VPA increased histone acetylation, but did not affect the level of DNA methylation. However, treatment with HH + VPA decreased cellular viability and proliferation. The use of these cells as nuclear donors showed no positive effect on pre- and postimplantation development. Regarding the treatment of cloned zygotes with TSA, treated one-cell embryos showed an increase in the acetylation patterns, but not in the level of DNA methylation. Moreover, this treatment revealed no positive effect on pre- and postimplantation development. This work provides evidence the treatment of either nuclear donor cells or cloned zygotes with CMAs has no positive effect on pre- and postimplantation development of cloned cattle.
Resumo:
In this paper, we discuss the effects of catalyst load with respect to carbon powder for several Pt and Pb-based catalysts, using formic acid as a model molecule. The discussion is based on electrochemical tests, a complete morphological investigation and theoretical calculations. We show that the Pt and Pb-based catalysts presented activity in formic acid oxidation at very low catalyst loads (e.g., 0.5% in respect to the carbon content). Physical characterisations demonstrate that the electrodes are composed of separated phases of Pt and lead distributed in Pt nanometric-sized islands that are heterogeneously dispersed on the carbon support and Pb ultra-small particles homogeneously distributed throughout the entire carbon surface, as demonstrated by the microscopy studies. At high catalyst loads, very large clusters of Pb(x)O(y) could be observed. Electrochemical tests indicated an increase in the apparent resistance of the system (by a factor of 19.7 Omega) when the catalyst load was increased. The effect of lead in the materials was also studied by theoretical calculations (OFT). The main conclusion is that the presence of Pb atoms in the catalyst can improve the adsorption of formic acid in the catalytic system compared with a pure Pt-based catalyst. (C) 2011 Elsevier B.V. All rights reserved.