14 resultados para microbial biomass

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land degradation causes great changes in the soil biological properties. The process of degradation may decrease soil microbial biomass and consequently decrease soil microbial activity. The study was conducted out during 2009 and 2010 at the four sites of land under native vegetation (NV), moderately degraded land (LDL), highly degraded land (HDL) and land under restoration for four years (RL) to evaluate changes in soil microbial biomass and activity in lands with different degradation levels in comparison with both land under native vegetation and land under restoration in Northeast Brazil. Soil samples were collected at 0-10 cm depth. Soil organic carbon (SOC), soil microbial biomass C (MBC) and N (MBN), soil respiration (SR), and hydrolysis of fluorescein diacetate (FDA) and dehydrogenase (DHA) activities were analyzed. After two years of evaluation, soil MBC, MBN, FDA and DHA had higher values in the NV, followed by the RL. The decreases of soil microbial biomass and enzyme activities in the degraded lands were approximately 8-10 times as large as those found in the NV. However, after land restoration, the MBC and MBN increased approximately 5-fold and 2-fold, respectively, compared with the HDL. The results showed that land degradation produced a strong decrease in soil microbial biomass. However, land restoration may promote short- and long-term increases in soil microbial biomass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten yeast strains were evaluated concerning their capabilities to assimilate biodiesel-derived glycerol in batch cultivation. The influence of glycerol concentration, temperature, pH and yeast extract concentration on biomass production was studied for the yeast selected. Further, the effect of agitation on glycerol utilization by the yeast Hansenula anomala was also studied. The yeast H. anomala CCT 2648 showed the highest biomass yield (0.30 g g(-1)) and productivity (0.19 g L-1 h(-1)). Citric acid, succinic acid, acetic acid and ethanol were found as the main metabolites produced. The increase of yeast extract concentration from 1 to 3 g L-1 resulted in high biomass production. The highest biomass concentration (21 g L-1), yield (0.45 g g(-1)) and productivity (0.31 g L-1 h(-1)), as well as ribonucleotide production (13.13 mg g(-1)), were observed at 700 rpm and 0.5 vvm. These results demonstrated that glycerol from biodiesel production process showed to be a feasible substrate for producing biomass and ribonucleotides by yeast species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organic matter quality, expressed as the proportion of chlorophyll a (Chl a) to degraded organic material (i.e. phaeopigments), is known to influence the structure of benthic associations and plays an important role in the functioning of the ecosystem. This study investigates the vertical distribution of microbial biomass, meiofauna and macrofauna with respect to organic matter variation in Ubatuba, Brazil, a southeastern, subtropical coastal area. On three occasions, samples were collected in exposed and sheltered stations, at high and low hydrodynamic conditions. We hypothesize that benthic assemblages will have high meio- and macrofaunal densities and high microbial biomass at the sediment surface at the sheltered site, and lower and vertically homogeneous microbial biomass and densities of meio- and macrofauna are expected at the exposed site. The accumulation of fresh organic matter at the sediment surface was observed at both stations over the three sampling dates, which contributed to the higher densities of meiofauna in the first layers of the sediment column. Macrofauna followed the same trend only at the exposed station, but changes in the number of species, biodiversity and feeding groups were registered for both stations. Microbial biomass increased at the sheltered station over the three sampling dates, whereas at the exposed station, microbial biomass was nearly constant. Physical exposure did not influence organic matter loading at the sites and therefore did not affect overall structure of benthic assemblages, which negates our original hypothesis. Most of the benthic system components reacted to organic matter quality and quantity, but relationships between different-sized organisms (i.e. competition and/or predation) may explain the unchanged microbial profiles at the exposed site and homogeneous vertical distribution of macrofauna at the sheltered site. In conclusion, the high quality of organic matter was a crucial factor in sustaining and regulating the benthic system, but coupled results showed that interactions between micro-, meio- and macrofauna can be highly complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Black carbon (BC) is an important fraction of many soils worldwide and plays an important role in global C biogeochemistry. However, few studies have examined how it influences the mineralization of added organic matter (AOM) and its incorporation into soil physical fractions and whether BC decomposition is increased by AOM. BC-rich Anthrosols and BC-poor adjacent soils from the Central Amazon (Brazil) were incubated for 532 days either with or without addition of (13)C-isotopically different plant residue. Total C mineralization from the BC-rich Anthrosols with AOM was 25.5% (P < 0.05) lower than with mineralization from the BC-poor adjacent soils. The AOM contributed to a significantly (P < 0.05) higher proportion to the total C mineralized in the BC-rich Anthrosols (91-92%) than the BC-poor adjacent soils (69-80%). The AOM was incorporated more rapidly in BC-rich than BC-poor soils from the separated free light fraction through the intra-aggregate light fraction into the stable organo-mineral fraction and up to 340% more AOM was found in the organo-mineral fraction. This more rapid stabilization was observed despite a significantly (P < 0.05) lower metabolic quotient for BC-rich Anthrosols. The microbial biomass (MB) was up to 125% greater (P < 0.05) in BC-rich Anthrosols than BC-poor adjacent soils. To account for increased MB adsorption onto BC during fumigation extraction, a correction factor was developed via addition of a (13)C-enriched microbial culture. The recovery was found to be 21-41 % lower (P < 0.05) for BC-rich than BC-poor soils due to re-adsorption of MB onto BC. Mineralization of native soil C was enhanced to a significantly greater degree in BC-poor adjacent soils compared to BC-rich Anthrosols as a result of AOM. No positive priming by way of cometabolism due to AOM could be found for aged BC in the soils. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Indicators of soil quality associated with N-cycling were assessed under different land-use systems (native forest NAT, reforestation with Araucaria angustifolia or Pinus taeda and agricultural use AGR) to appraise the effects on the soil potential for N supply. The soil total N ranged from 2 to 4 g/kg (AGR and NAT, respectively), and the microbial biomass N ranged from 80 to 250 mg/kg, being higher in NAT and A. angustifolia, and lower in P. taeda and AGR sites. Activities of asparaginase (ca. 50200 mg NH4+-N/kg per h), glutaminase (ca. 200800 mg NH4+-N/kg per h) and urease (ca. 80200 mg NH4+-N/kg/h) were also more intense in the NAT and A. angustifolia-reforested soils, indicating greater capacity for N mineralization. The NAT and AGR soils showed the highest and the lowest ammonification rate, respectively (ca. 1 and 0.4 mg NH4+-N/kg per day), but the inverse for nitrification rate (ca. 12 and 26%), indicating a low capacity for N supply, in addition to higher risks of N losses in the AGR soil. A multivariate analysis indicated more similarity between NAT and A. angustifolia-reforested sites, whilst the AGR soil was different and associated with a higher nitrification rate. In general, reforestation with the native species A. angustifolia had less impact than reforestation with the exogenous species P. taeda, considering the soil capacity for N supply. However, AGR use caused more changes, generally decrease in indicators of N-cycling, showing a negative soil management effect on the sustainability of this agroecosystem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of Sao Paulo: Parque Estadual Turistico do Alto do Ribeira and Parque Estadual de Campos de Jordao. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO(2)) and the following enzyme activities: beta-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO(2). The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO(2), suggesting an advanced stage of succession.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Urea has been considered as a promising alternative nitrogen source for the cultivation of Arthrospira platensis if it is possible to avoid ammonia toxicity; however, this procedure can lead to periods of nitrogen shortage. This study shows that the addition of potassium nitrate, which acts as a nitrogen reservoir, to cultivations carried out with urea in a fed-batch process can increase the maximum cell concentration (Xm) and also cell productivity (PX). Using response surface methodology, the model indicates that the estimated optimum Xm can be achieved with 17.3 mM potassium nitrate and 8.9 mM urea. Under this condition an Xm of 6077 +/- 199 mg/L and a PX of 341.5 +/- 19.1 mg L1day1 were obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of São Paulo: Parque Estadual Turístico do Alto do Ribeira and Parque Estadual de Campos de Jordão. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO2) and the following enzyme activities: β-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO2. The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO2, suggesting an advanced stage of succession.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compared the microbial community composition in soils from the Brazilian Amazon with two contrasting histories; anthrosols and their adjacent non-anthrosol soils of the same mineralogy. The anthrosols, also known as the Amazonian Dark Earths or terra preta, were managed by the indigenous pre-Colombian Indians between 500 and 8,700 years before present and are characterized by unusually high cation exchange capacity, phosphorus (P), and calcium (Ca) contents, and soil carbon pools that contain a high proportion of incompletely combusted biomass as biochar or black carbon (BC). We sampled paired anthrosol and unmodified soils from four locations in the Manaus, Brazil, region that differed in their current land use and soil type. Community DNA was extracted from sampled soils and characterized by use of denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism. DNA bands of interest from Bacteria and Archaea DGGE gels were cloned and sequenced. In cluster analyses of the DNA fingerprints, microbial communities from the anthrosols grouped together regardless of current land use or soil type and were distinct from those in their respective, paired adjacent soils. For the Archaea, the anthrosol communities diverged from the adjacent soils by over 90%. A greater overall richness was observed for Bacteria sequences as compared with those of the Archaea. Most of the sequences obtained were novel and matched those in databases at less than 98% similarity. Several sequences obtained only from the anthrosols grouped at 93% similarity with the Verrucomicrobia, a genus commonly found in rice paddies in the tropics. Sequences closely related to Proteobacteria and Cyanobacteria sp. were recovered only from adjacent soil samples. Sequences related to Pseudomonas, Acidobacteria, and Flexibacter sp. were recovered from both anthrosols and adjacent soils. The strong similarities among the microbial communities present in the anthrosols for both the Bacteria and Archaea suggests that the microbial community composition in these soils is controlled more strongly by their historical soil management than by soil type or current land use. The anthrosols had consistently higher concentrations of incompletely combusted organic black carbon material (BC), higher soil pH, and higher concentrations of P and Ca compared to their respective adjacent soils. Such characteristics may help to explain the longevity and distinctiveness of the anthrosols in the Amazonian landscape and guide us in recreating soils with sustained high fertility in otherwise nutrient-poor soils in modern times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of an anaerobic sequencing-batch biofilm reactor (ASBBR-laboratory scale- 14L) containing biomass immobilized on coal was evaluated for the removal of elevated concentrations of sulfate (between 200 and 3,000 mg SO4-2.L-1) from industrial wastewater effluents. The ASBBR was shown to be efficient for removal of organic material (between 90% and 45%) and sulfate (between 95% and 85%). The microbiota adhering to the support medium was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). The ARDRA profiles for the Bacteria and Archaea domains proved to be sensitive for the determination of microbial diversity and were consistent with the physical-chemical monitoring analysis of the reactor. At 3,000 mg SO4-2.L-1, there was a reduction in the microbial diversity of both domains and also in the removal efficiencies of organic material and sulfate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil microcosms contaminated with crude oil with or without chromium and copper were monitored over a period of 90 days for microbial respiration, biomass, and for dehydrogenase, lipase, acid phosphatase, and arylsulfatase activities. In addition, the community structure was followed by enumerating the total heterotrophic and oil-degrading viable bacteria and by performing a denaturing gradient gel electrophoresis (DGGE) of the PCR amplified 16S rDNA. A significant difference was observed for biochemical activities and microbial community structures between the microcosms comprised of uncontaminated soil, soil contaminated with crude oil and soil contaminated with crude oil and heavy metals. The easily measured soil enzyme activities correlated well with microbial population levels, community structures and rates of respiration (CO2 production). The estimation of microbial responses to soil contamination provides a more thorough understanding of the microbial community function in contaminated soil, in situations where technical and financial resources are limited and may be useful in addressing bioremediation treatability and effectiveness. (C) 2012 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of tannery sludge application on soil microbial community and diversity is poorly understood. We studied the microbial community in an agricultural soil following two applications (2006 and 2007) of tannery sludge with annual application rates of 0.0,2.3 and 22.6 Mg ha(-1). The soil was sampled 12 and 271 days after the second (2007) application. Community structure was assessed via a phospholipid fatty acid analysis, and the physiological profile of the soil microbial community via the Biolog method. Tannery sludge application changed soil chemical properties, increasing the soil pH and electrical conductivity as well as available P and mineral N concentrations. The higher sludge application rate changed the community structure and the physiological profile of the microbial community at both sampling dates. However, there is no clear link between community structure and carbon substrate utilization. According to the Distance Based Linear Models Analysis, the fatty acids 16:0 and 117:0 together contributed 84% to the observed PLFA patterns, whereas the chemical properties available P, mineral N, and Ca, and pH together contributed 54%. At 12 days, tannery sludge application increased the average well color development from 0.46 to 0.87 after 48 h, and reduced the time elapsed before reaching the midpoint carbon substrate utilization (s) from 71 to 44 h, an effect still apparent nine months after application of the higher sludge application rate. The dominant signature fatty acids and kinetic parameters (r and s) were correlated to the concentrations of available P. Ca, mineral N, pH and EC. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated linear alkylbenzene sulfonate removal in an expanded granular sludge bed reactor with hydraulic retention times of 26 h and 32 h. Sludge bed and separator phase biomass were phylogenetically characterized (sequencing 16S rRNA) and quantified (most probable number) to determine the total anaerobic bacteria and methanogenic Archaea. The reactor was fed with a mineral medium supplemented with 14 mg l(-1) LAS, ethanol and methanol. The stage I-32 h consisted of biomass adaptation (without LAS influent) until reactor stability was achieved (COD removal >97%). In stage II-32 h, LAS removal was 74% due to factors such as dilution, degradation and adsorption. Higher HRT values increased the LAS removal (stage III: 26 h - 48% and stage IV: 32 h - 64%), probably due to increased contact time between the biomass and LAS. The clone libraries were different between samples from the sludge bed (Synergitetes and Proteobacteria) and the separator phase (Firmicutes and Proteobacteria) biomass. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of an anaerobic sequencing-batch biofilm reactor (ASBBR- laboratory scale- 14L )containing biomass immobilized on coal was evaluated for the removal of elevated concentrations of sulfate (between 200 and 3,000 mg SO4-2·L-1) from industrial wastewater effluents. The ASBBR was shown to be efficient for removal of organic material (between 90% and 45%) and sulfate (between 95% and 85%). The microbiota adhering to the support medium was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). The ARDRA profiles for the Bacteria and Archaea domains proved to be sensitive for the determination of microbial diversity and were consistent with the physical-chemical monitoring analysis of the reactor. At 3,000 mg SO4-2·L-1, there was a reduction in the microbial diversity of both domains and also in the removal efficiencies of organic material and sulfate.