8 resultados para metabolism, glutamate uptake, PPARp, astrocyte, métabolisme, import du glutamate, stellation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: This study assessed the relationship between lower limb hemodynamics and metabolic parameters with walking tolerance in patients with intermittent claudication (IC). Patients and methods: Resting ankle-brachial index (ABI), baseline blood flow (BF), BF response to reactive hyperemia (BFRH), oxygen uptake (VO2), initial claudication distance (ICD) and total walking distance (TWD) were measured in 28 IC patients. Pearson and Spearman correlations were calculated. Results: ABI, baseline BF and BF response to RH did not correlate with ICD or TWD. VO2 at first ventilatory threshold and VO(2)peak were significantly and positively correlated with ICD (r = 0.41 and 0.54, respectively) and TWD (r = 0.65 and 0.71, respectively). Conclusions: VO(2)peak and VO2 at first ventilatory threshold, but not ABI, baseline BF and BFHR were associated with walking tolerance in IC patients. These results suggest that VO2 at first ventilatory threshold may be useful to evaluate walking tolerance and improvements in IC patients.
Resumo:
Evidence points to a role of the mammalian target of rapamycin (mTOR) signaling pathway as a regulator of adiposity, yet its involvement as a mediator of the positive actions of peroxisome proliferator-activated receptor (PPAR)gamma agonism on lipemia, fat accretion, lipid uptake, and its major determinant lipoprotein lipase (LPL) remains to be elucidated. Herein we evaluated the plasma lipid profile, triacylglycerol (TAG) secretion rates, and adipose tissue LPL-dependent lipid uptake, LPL expression/activity, and expression profile of other lipid metabolism genes in rats treated with the PPAR gamma agonist rosiglitazone (15 mg/kg/day) in combination or not with the mTOR inhibitor rapamycin (2 mg/kg/day) for 15 days. Rosiglitazone stimulated adipose tissue mTOR complex 1 and AMPK and induced TAG-derived lipid uptake (136%), LPL mRNA/activity (2- to 6-fold), and fat accretion in subcutaneous (but not visceral) white adipose tissue (WAT; 50%) and in brown adipose tissue (BAT; 266%). Chronic mTOR inhibition attenuated the upregulation of lipid uptake, LPL expression/activity, and fat accretion induced by PPAR gamma activation in both subcutaneous WAT and BAT, which resulted in hyperlipidemia. In contrast, rapamycin did not affect most of the other WAT lipogenic genes upregulated by rosiglitazone. Together these findings demonstrate that mTOR is a major regulator of adipose tissue LPL-mediated lipid uptake and a critical mediator of the hypolipidemic and lipogenic actions of PPAR gamma activation.-Blanchard, P-G., W. T. Festuccia, V. P. Houde, P. St-Pierre, S. Brule, V. Turcotte, M. Cote, K. Bellmann, A. Marette, and Y. Deshaies. Major involvement of mTOR in the PPAR gamma-induced stimulation of adipose tissue lipid uptake and fat accretion. J. Lipid Res. 2012. 53: 1117-1125.
Resumo:
We report changes in plasma arginine vasopressin (AVP) and oxytocin (OT) concentrations evoked by the microinjection of L-glutamate (L-glu) into the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus(PVN) of unanesthetized rats, as well as which local mechanisms are involved in their mediation. L-Glu microinjection (10 nmol/100 nl) into the SON increased the circulating levels of both AVP and OT. The AVP increases were blocked by local pretreatment with the selective non-N-methyl-D-aspartate (NMDA) receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) (2 nmol/100 nl), but it was not affected by pretreatment with the NMDA-receptor antagonist LY235959 (2 nmol/100 nl). The OT response to L-glu microinjection into the SON was blocked by local pretreatment with either NBQX or LY235959. Furthermore, the administration of either the non-NMDA receptor agonist (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) (5 nmol/100 nl) or NMDA receptor agonist NMDA (5 nmol/100 nl) into the SON had no effect on OT baseline plasma levels, but when both agonists were microinjected together these levels were increased. L-Glu microinjection into the PVN did not change circulating levels of either AVP or OT. However, after local pretreatment with LY235959, the L-glu microinjection increased plasma levels of the hormones. The L-glu microinjection into the PVN after the local treatment with NBQX did not affect the circulating AVP and OT levels. Therefore, results suggest the AVP release from the SON is mediated by activation of non-NMDA glutamate receptors, whereas the OT release from this nucleus is mediated by an interaction of NMDA and non-NMDA receptors. The present study also suggests an inhibitory role for NMDA receptors in the PVN on the release of AVP and OT. (Endocrinology 153: 2323-2331, 2012)
Resumo:
Background: Given the established fact that obesity interferes with male reproductive functions, the present study aimed to evaluate sperm production in the testis and storage in the epididymis in a glutamate-induced model of obesity. Methods: Male rats were treated neonatally with monosodium glutamate (MSG) at doses of 4 mg/kg subcutaneously, or with saline solution (control group), on postnatal days 2, 4, 6, 8 and 10. On day 120, obesity was confirmed by the Lee index in all MSG-treated rats. After this, all animals from the two experimental groups were anesthetized and killed to evaluate body and reproductive organ weights, sperm parameters, plasma hormone levels (FSH, LH and testosterone), testicular and epididymal histo-morphometry and histopathology. Results: Significant reductions in absolute and relative weights of testis, epididymis, prostate and seminal vesicle were noted in MSG-treated animals. In these same animals plasma testosterone and follicle-stimulating hormone (FSH) concentrations were decreased, as well as sperm counts in the testis and epididymis and seminiferous epithelium height and tubular diameter. The sperm transit time was accelerated in obese rats. However, the number of Sertoli cells per seminiferous tubule and stereological findings on the epididymis were not markedly changed by obesity. Conclusions: Neonatal MSG-administered model of obesity lowers sperm production and leads to a reduction in sperm storage in the epididymis of adult male rats. The acceleration of sperm transit time can have implications for the sperm quality of these rats.
Resumo:
The hyperinsulinism/hyperammonemia (HI/HA) syndrome is a rare autosomal dominant disease manifested by hypoglycemic symptoms triggered by fasting or high-protein meals, and by elevated serum ammonia. HI/HA is the second most common cause of hyperinsulinemic hypoglycemia of infancy, and it is caused by activating mutations in GLUD1, the gene that encodes mitochondrial enzyme glutamate dehydrogenase (GDH). Biochemical evaluation, as well as direct sequencing of exons and exon-intron boundary regions of the GLUD1 gene, were performed in a 6-year old female patient presenting fasting hypoglycemia and hyperammonemia. The patient was found to be heterozygous for one de novo missense mutation (c.1491A>G; p.Il497Met) previously reported in a Japanese patient. Treatment with diazoxide 100 mg/day promoted complete resolution of the hypoglycemic episodes. Arq Bras Endocrinol Metab. 2012;56(8):485-9
Resumo:
Glutamine is an essential nutrient for cancer cell proliferation, especially in the context of citric acid cycle anaplerosis. In this manuscript we present results that collectively demonstrate that, of the three major mammalian glutaminases identified to date, the lesser studied splice variant of the gene gls, known as Glutaminase C (GAC), is important for tumor metabolism. We show that, although levels of both the kidney-type isoforms are elevated in tumor vs. normal tissues, GAC is distinctly mitochondrial. GAC is also most responsive to the activator inorganic phosphate, the content of which is supposedly higher in mitochondria subject to hypoxia. Analysis of X-ray crystal structures of GAC in different bound states suggests a mechanism that introduces the tetramerization-induced lifting of a "gating loop" as essential for the phosphate-dependent activation process. Surprisingly, phosphate binds inside the catalytic pocket rather than at the oligomerization interface. Phosphate also mediates substrate entry by competing with glutamate. A greater tendency to oligomerize differentiates GAC from its alternatively spliced isoform and the cycling of phosphate in and out of the active site distinguishes it from the liver-type isozyme, which is known to be less dependent on this ion.
Resumo:
Background Oxidative stress is recognized as a major pathogenic factor of cellular damage caused by hyperglycemia. NOX/NADPH oxidases generate reactive oxygen species and NOX1, NOX2 and NOX4 isoforms are expressed in kidney and require association with subunit p22phox (encoded by the CYBA gene). Increased expression of p22phox was described in animal models of diabetic nephropathy. In the opposite direction, glutathione is one of the main endogenous antioxidants whose plasmatic concentrations were reported to be reduced in diabetes patients. The aim of the present investigation was to test whether functional single nucleotide polymorphisms (SNPs) in genes involved in the generation of NADPH-dependent O2•- (-675 T → A in CYBA, unregistered) and in glutathione metabolism (-129 C → T in GCLC [rs17883901] and -65 T → C in GPX3 [rs8177412]) confer susceptibility to renal disease in type 1 diabetes patients. Methods 401 patients were sorted into two groups according to the presence (n = 104) or absence (n = 196) of overt diabetic nephropathy or according to glomerular filtration rate (GFR) estimated by Modification of Diet in Renal Disease (MDRD) equation: ≥ 60 mL (n = 265) or < 60 mL/min/1.73 m2 (n = 136) and were genotyped. Results No differences were found in the frequency of genotypes between diabetic and non-diabetic subjects. The frequency of GFR < 60 mL/min was significantly lower in the group of patients carrying CYBA genotypes T/A+A/A (18.7%) than in the group carrying the T/T genotype (35.3%) (P = 0.0143) and the frequency of GFR < 60 mL/min was significantly higher in the group of patients carrying GCLC genotypes C/T+T/T (47.1%) than in the group carrying the C/C genotype (31.1%) (p = 0.0082). Logistic regression analysis identified the presence of at least one A allele of the CYBA SNP as an independent protection factor against decreased GFR (OR = 0.38, CI95% 0.14-0.88, p = 0.0354) and the presence of at least one T allele of the GCLC rs17883901 SNP as an independent risk factor for decreased GFR (OR = 2.40, CI95% 1.27-4.56, p = 0.0068). Conclusions The functional SNPs CYBA -675 T → A and GCLC rs17883901, probably associated with cellular redox imbalances, modulate the risk for renal disease in the studied population of type 1 diabetes patients and require validation in additional cohorts.
Resumo:
All of the adaptations acquired through physical training are reversible with inactivity. Although significant reductions in maximal oxygen uptake (VO2max) can be observed within 2 to 4 wk of detraining, the consequences of detraining on the physiology of adipose tissue are poorly known. Our aim was therefore to investigate the effects of discontinuing training (physical detraining) on the metabolism and adipocyte cellularity of rat periepididymal (PE) adipose tissue. Male Wistar rats, aged 6 wk, were divided into three groups and studied for 12 wk under the following conditions: 1) trained (T) throughout the period; 2) detrained (D), trained during the first 8 wk and detrained during the remaining 4 wk; and 3) age-matched sedentary (S). Training consisted of treadmill running sessions (1 h/day, 5 days/wk, 50–60%VO2max). The PE adipocyte size analysis revealed significant differences between the groups. The adipocyte cross-sectional area (in µm2) was significantly larger in D than in the T and S groups (3,474 ± 68.8; 1,945.7 ± 45.6; 2,492.4 ± 49.08, respectively, P < 0.05). Compared with T, the isolated adipose cells (of the D rats) showed a 48% increase in the ability to perform lipogenesis (both basal and maximally insulin-stimulated) and isoproterenol-stimulated lipolysis. No changes were observed with respect to unstimulated lipolysis. A 15% reduction in the proportion of apoptotic adipocytes was observed in groups T and D compared with group S. The gene expression levels of adiponectin and PPAR-gamma were upregulated by factors of 3 and 2 in D vs. S, respectively. PREF-1 gene expression was 3-fold higher in T vs. S. From these results, we hypothesize that adipogenesis was stimulated in group D and accompanied by significant adipocyte hypertrophy and an increase in the lipogenic capacity of the adipocytes. The occurrence of apoptotic nuclei in PE fat cells was reduced in the D and T rats; these results raise the possibility that the adipose tissue changes after detraining are obesogenic.