16 resultados para metabolic weight
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective: To investigate the relationship between working at night and increased body weight in nursing. In addition, we evaluated the differences in the proportion of variables sociodemographic, work and health, according to the work shift and their association with body mass index. Methods: Based on questionnaires, we obtained data from 446 nursing professionals about aspects of their job, health and lifestyle. We performed linear and logistic regression analysis. Results: Working at night is associated with a weight gain greater than (beta=0.24 kg/m(2)) working during the day (beta=0.15 kg/m(2)), as well as with aging (beta=0.16 kg/m(2)) and duration of working in nursing (beta=0.18 kg/m(2)). Night workers have a higher educational level, have been working for more years in nursing and also in the current shift, do not have diabetes and have reported longer sleep than day workers. There are also a higher number of smokers among the night workers than day workers. Logistic regression analysis also showed the more time to work in nursing and as an assistant was more likely to develop overweight/obesity. Conclusion: Working at the night contributes to more weight gain than the day shift, aging and duration of working in nursing.
Resumo:
Diabetes mellitus is a product of low insulin sensibility and pancreatic beta-cell insufficiency. Rats with streptozotocin-induced diabetes during the neonatal period by the fifth day of age develop the classic diabetic picture of hyperglycemia, hypoinsulinemia, polyuria, and polydipsia aggravated by insulin resistance in adulthood. In this study, we investigated whether the effect of long-term treatment with melatonin can improve insulin resistance and other metabolic disorders in these animals. At the fourth week of age, diabetic animals started an 8-wk treatment with melatonin (1 mg/kg body weight) in the drinking water at night. Animals were then killing, and the sc, epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed, and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Blood samples were collected for biochemical assays. Melatonin treatment reduced hyperglycemia, polydipsia, and polyphagia as well as improved insulin resistance as demonstrated by constant glucose disappearance rate and homeostasis model of assessment-insulin resistance. However, melatonin treatment was unable to recover body weight deficiency, fat mass, and adipocyte size of diabetic animals. Adiponectin and fructosamine levels were completely recovered by melatonin, whereas neither plasma insulin level nor insulin secretion capacity was improved in diabetic animals. Furthermore, melatonin caused a marked delay in the sexual development, leaving genital structures smaller than those of nontreated diabetic animals. Melatonin treatment improved the responsiveness of adipocytes to insulin in diabetic animals measured by tests of glucose uptake (sc, EP, and RP), glucose oxidation, and incorporation of glucose into lipids (EP and RP), an effect that seems partially related to an increased expression of insulin receptor substrate 1, acetyl-coenzyme A carboxylase and fatty acid synthase. In conclusion, melatonin treatment was capable of ameliorating the metabolic abnormalities in this particular diabetes model, including insulin resistance and promoting a better long-term glycemic control. (Endocrinology 153: 2178-2188, 2012)
Resumo:
Background: Recent studies have identified that a higher resting heart rate (RHR) is associated with elevated blood pressure, independent of body fatness, age and ethnicity. However, it is still unclear whether RHR can also be applied as a screening for other risk factors, such as hyperglycemia and dyslipidemia. Thus, the purpose of the presented study was to analyze the association between RHR, lipid profile and fasting glucose in obese children and adolescents. Methods: The sample was composed of 180 obese children and adolescents, aged between 7-16 years. Whole-body and segmental body composition were estimated by Dual-energy X-ray absorptiometry. Resting heart rate (RHR) was measured by heart rate monitors. The fasting blood samples were analyzed for serum triglycerides, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose, using the colorimetric method. Results: Fasting glucose, TC, triglycerides, HDL-C, LDL-C and RHR were similar in both genders. The group of obese subjects with a higher RHR presented, at a lower age, higher triglycerides and TC. There was a significant relationship between RHR, triglycerides and TC. In the multivariate model, triglycerides and TC maintained a significant relationship with RHR independent of age, gender, general and trunk adiposity. The ROC curve indicated that RHR has a high potential for screening elevated total cholesterol and triglycerides as well as dyslipidemia. Conclusion: Elevated RHR has the potential to identify subjects at an increased risk of atherosclerosis development.
Resumo:
Aims: Metformin is an insulin sensitizing agent with beneficial effects in diabetic patients on glycemic levels and in the cardiovascular system. We examined whether the metabolic changes and the vascular dysfunction in monosodium glutamate-induced obese non-diabetic (MSG) rats might be improved by metformin. Main methods: 16 week-old MSG rats were treated with metformin for 15 days and compared with age-matched untreated MSG and non-obese non-diabetic rats (control). Blood pressure, insulin sensitivity, vascular reactivity and prostanoid release in the perfused mesenteric arteriolar bed as well as nitric oxide production and reactive oxygen species generation in isolated mesenteric arteries were analyzed. Key findings: 18-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia, insulin resistance and hyperinsulinemia. Metformin treatment improved these alterations. The norepinephrine-induced response, increased in the mesenteric arteriolar bed from MSG rats, was corrected by metformin. Indomethacin corrected the enhanced contractile response in MSG rats but did not affect metformin effects. The sensitivity to acetylcholine, reduced in MSG rats, was also corrected by metformin. Indomethacin corrected the reduced sensitivity to acetylcholine in MSG rats but did not affect metformin effects. The sensitivity to sodium nitroprusside was increased in preparations from metformin-treated rats. Metformin treatment restored both the reduced PGI2/TXA2 ratio and the increased reactive oxygen species generation in preparations from MSG rats. Significance: Metformin improved the vascular function in MSG rats through reduction in reactive oxygen species generation, modulation of membrane hyperpolarization. correction of the unbalanced prostanoids release and increase in the sensitivity of the smooth muscle to nitric oxide. (c) 2011 Elsevier Inc. All rights reserved.
Resumo:
A number of studies to better understand the complex physiological mechanism involved in regulating body weight have been conducted. More specifically, the hormones related to appetite, leptin and ghrelin, and their association to obesity have been a focus of investigation. Circadian patterns of these hormones are a new target of research. The behaviour of these hormones in individuals subject to atypical working times such as shiftwork remains unclear. Shiftwork is characterized by changes in biological rhythms and cumulative circadian phase changes, being associated with high rates of obesity and metabolic syndrome. Truck drivers, who work irregular shifts, frequently present a high prevalence of obesity, which might be associated with work-related factors and/or lifestyle. In this context, the aim of this paper was to discuss the relationship of body mass index, appetite-related hormones and sleep characteristics in truck drivers who work irregular shifts compared with day workers.
Sleeve Gastrectomy With Transit Bipartition A Potent Intervention for Metabolic Syndrome and Obesity
Resumo:
Objective: To present 5-year results of sleeve gastrectomy (SG) with transit bipartition (TB) as a metabolic intervention for obesity. Background: Recent data suggest that high glycemic index foods may lead to a hormonally hyperactive proximal gut and a hypoactivate distal gut, which are linked to metabolic syndrome. TB was designed to counterbalance these effects. Methods: A total of 1020 obese patients with body mass index (BMI) ranging from 33 to 72 Kg/m(2) underwent SG and TB (SG + TB). TB creates a gastroileal anastomosis in the antrum after the SG; nutrient transit is maintained in the duodenum, avoiding blind loops and minimizing malabsorption. The stomach retains 2 outflow pathways. A lateral enteroanastomosis connects both segments at 80 cm proximal to the cecum. Results: Adequate follow-up data were collected in 59.1% of patients from 4 months to 5 years. The average percent of excess BMI loss was 91%, 94%, 85%, 78%, and 74% in the first, second, third, fourth, and fifth year, respectively. Patients experienced early satiety and major improvement in presurgical comorbidities, including diabetes (86% in remission), following surgery. Two deaths occurred (0.2%). Other surgical complications occurred in 6% of patients. Signs of malabsorption were rare. Conclusions: SG + TB is a simple procedure that results in rapid weight loss and remission or major improvement of comorbidities. Strictly aiming at physiological correction, TB avoids prostheses, narrow anastomoses, excluded segments, and malabsorption. Weight and comorbidities are much improved. Diabetes is improved without duodenal exclusion. TB is an excellent complement to an SG.
Resumo:
Second generation antipsychotics (SGAs) have been linked to metabolic and bone disorders in clinical studies, but the mechanisms of these side effects remain unclear. Additionally, no studies have examined whether SGAs cause bone loss in mice. Using in vivo and in vitro modeling we examined the effects of risperidone, the most commonly prescribed SGA, on bone in C57BL6/J (B6) mice. Mice were treated with risperidone orally by food supplementation at a dose of 1.25 mg/kg daily for 5 and 8 weeks, starting at 3.5 weeks of age. Risperidone reduced trabecular BV/TV, trabecular number and percent cortical area. Trabecular histomorphometry demonstrated increased resorption parameters, with no change in osteoblast number or function. Risperidone also altered adipose tissue distribution such that white adipose tissue mass was reduced and liver had significantly higher lipid infiltration. Next, in order to tightly control risperidone exposure, we administered risperidone by chronic subcutaneous infusion with osmotic minipumps (0.5 mg/kg daily for 4 weeks) in 7 week old female B6 mice. Similar trabecular and cortical bone differences were observed compared to the orally treated groups (reduced trabecular BV/TV, and connectivity density, and reduced percent cortical area) with no change in body mass, percent body fat, glucose tolerance or insulin sensitivity. Unlike in orally treated mice, risperidone infusion reduced bone formation parameters (serum P1NP, MAR and BFR/BV). Resorption parameters were elevated, but this increase did not reach statistical significance. To determine if risperidone could directly affect bone cells, primary bone marrow cells were cultured with osteoclast or osteoblast differentiation media. Risperidone was added to culture medium in clinically relevant doses of 0, 2.5 or 25 ng/ml. The number of osteoclasts was significantly increased by addition in vitro of risperidone while osteoblast differentiation was not altered. These studies indicate that risperidone treatment can have negative skeletal consequences by direct activation of osteoclast activity and by indirect non-cell autonomous mechanisms. Our findings further support the tenet that the negative side effects of SGAs on bone mass should be considered when weighing potential risks and benefits, especially in children and adolescents who have not yet reached peak bone mass. This article is part of a Special Issue entitled: Interactions Between Bone, Adipose Tissue and Metabolism. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
To evaluate whether an interdisciplinary intervention program on lifestyle results in better quality of life (QoL) and lower frequencies of depression and binge eating disorder (BED) in individuals at risk for type 2 diabetes mellitus. A total of 177 individuals (32.2% men, age 55.4 +/- A 12.5 years) at risk for diabetes were allocated to a 9-month traditional (TI) or intensive interdisciplinary intervention (II) on dietary habits and physical activity including psychoeducative groups. They were submitted to questionnaires and clinical and laboratory examinations. Predictors of non-adherence were analyzed by logistic regression. Only individuals submitted to II had blood pressure and plasma glucose levels reduced. Frequencies of depression reduced in both interventions but of BED only in II (28.0-4.0%, P < 0.001). Increments in the scores of SF-36 domains (physical functioning: 11.1 +/- A 14.0 vs. 5.3 +/- A 13.0, role-emotional: 20.4 +/- A 40.2 vs. 6.2 +/- A 43.8, P = 0.05) were greater in the II than in TI, respectively. Changes in SF-36 correlated with decreases in anthropometry, blood pressure and glucose levels, depression and BED scores. Male gender was independently associated with non-adherence to the II. In addition to metabolic benefits, an interdisciplinary approach may induce desirable extrametabolic effects, favoring the control of psychiatric disorders and improving the QoL of individuals at risk for diabetes.
Resumo:
BACKGROUND: Ghrelin is a gastrointestinal peptide hormone (a 28-amino acid peptide) produced primarily by X/A cells in the oxyntic glands of the stomach fundus and cells lining the duodenum cavern. It suppresses insulin secretion and action and commands a significant role in regulating food intake. The aim of the present study was to show that modified laparoscopic sleeve gastrectomy (MLSG), in which a significant part of the gastric fundus and body of the stomach is removed up to 1 inch from the pylorus vein, may contribute to decreasing circulating ghrelin levels. METHODS: A study population consisting of 150 individuals was monitored after undergoing a MLSG, with individuals chosen based on a documented history of diabetes mellitus type 2 and metabolic syndrome, clinical results determining a body mass index (BMI) of 35 to 60 kg/m(2), peptide C level greater than 1, negative anti-glutamic acid decarboxylase, negative anti-insulin, and confirmed stability of drug/insulin treatment and glycosylated hemoglobin greater than 6.5% for at least 24 and 3 months, respectively, before enrollment. RESULTS: Twenty-four months after surgery, 150 patients (86.6%) presented with normal glycemic levels between 77 and 99 mg/dL. All patients improved average serum insulin levels by 9 mU/L and average glycosylated hemoglobin levels by 5.1% (normal range, 4%-6%). All patients tested negative for Helicobacter pylori and stopped using insulin, with 3 patients prescribed twice-daily use of an oral hypoglycemiant. In 14% of cases, patients experienced partial hair loss with low serum zinc levels and were prescribed oral zinc reposition and topical hair stimulants. The average weight loss recorded was 44.6% for patients with a BMI less than 45 kg/m(2) and 58% for patients with a BMI greater than 50 kg/m(2). CONCLUSIONS: The MLSG is a safe procedure with a low morbidity rate (2.7%) (4 cases of fistula and 2 of bleeding) and no surgical mortality in this study. This surgery can promote control of diabetes mellitus type 2 and aid the treatment of exogenous overweight and morbidly obese individuals. The results of this study show that only through resection of the ghrelin-producing gastric area can most obesity cases and diabetes type II conditions be reverted to nonobese and controlled diabetes. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity.
Resumo:
Background: Childhood obesity is a public health problem worldwide. Visceral obesity, particularly associated with cardio-metabolic risk, has been assessed by body mass index (BMI) and waist circumference, but both methods use sex-and age-specific percentile tables and are influenced by sexual maturity. Waist-to-height ratio (WHtR) is easier to obtain, does not involve tables and can be used to diagnose visceral obesity, even in normal-weight individuals. This study aims to compare the WHtR to the 2007 World Health Organization (WHO) reference for BMI in screening for the presence of cardio-metabolic and inflammatory risk factors in 6–10-year-old children. Methods: A cross-sectional study was undertaken with 175 subjects selected from the Reference Center for the Treatment of Children and Adolescents in Campos, Rio de Janeiro, Brazil. The subjects were classified according to the 2007 WHO standard as normal-weight (BMI z score > −1 and < 1) or overweight/obese (BMI z score ≥ 1). Systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting glycemia, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), Homeostatic Model Assessment – Insulin Resistance (HOMA-IR), leukocyte count and ultrasensitive C-reactive protein (CRP) were also analyzed. Results: There were significant correlations between WHtR and BMI z score (r = 0.88, p < 0.0001), SBP (r = 0.51, p < 0.0001), DBP (r = 0.49, p < 0.0001), LDL (r = 0.25, p < 0.0008, HDL (r = −0.28, p < 0.0002), TG (r = 0.26, p < 0.0006), HOMA-IR (r = 0.83, p < 0.0001) and CRP (r = 0.51, p < 0.0001). WHtR and BMI areas under the curve were similar for all the cardio-metabolic parameters. A WHtR cut-off value of > 0.47 was sensitive for screening insulin resistance and any one of the cardio-metabolic parameters. Conclusions: The WHtR was as sensitive as the 2007 WHO BMI in screening for metabolic risk factors in 6-10-year-old children. The public health message “keep your waist to less than half your height” can be effective in reducing cardio-metabolic risk because most of these risk factors are already present at a cut point of WHtR ≥ 0.5. However, as this is the first study to correlate the WHtR with inflammatory markers, we recommend further exploration of the use of WHtR in this age group and other population-based samples.
Resumo:
Background The increase in fructose consumption is paralleled by a higher incidence of metabolic syndrome, and consequently, cardiovascular disease mortality. We examined the effects of 8 weeks of low intensity exercise training (LET) on metabolic, hemodynamic, ventricular and vascular morphological changes induced by fructose drinking in male rats. Methods Male Wistar rats were divided into (n = 8 each) control (C), sedentary fructose (F) and ET fructose (FT) groups. Fructose-drinking rats received D-fructose (100 g/l). FT rats were assigned to a treadmill training protocol at low intensity (30% of maximal running speed) during 1 h/day, 5 days/week for 8 weeks. Measurements of triglyceride concentrations, white adipose tissue (WAT) and glycemia were carried out together with insulin tolerance test to evaluate metabolic profile. Arterial pressure (AP) signals were directly recorded. Baroreflex sensitivity (BS) was evaluated by the tachycardic and bradycardic responses. Right atria, left ventricle (LV) and ascending aorta were prepared to morphoquantitative analysis. Results LET reduced WAT (−37.7%), triglyceride levels (−33%), systolic AP (−6%), heart weight/body weight (−20.5%), LV (−36%) and aortic (−76%) collagen fibers, aortic intima-media thickness and circumferential wall tension in FT when compared to F rats. Additionally, FT group presented improve of BS, numerical density of atrial natriuretic peptide granules (+42%) and LV capillaries (+25%), as well as the number of elastic lamellae in aorta compared with F group. Conclusions Our data suggest that LET, a widely recommended practice, seems to be particularly effective for preventing metabolic, hemodynamic and morphological disorders triggered by MS.
Resumo:
The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns.
Resumo:
OBJECTIVES: The present investigation aimed to study the protective effect of intermittent normothermic cardioplegia in rabbit's hypertrophic hearts. METHODS: The parameters chosen were 1) the ratio heart weight / body weight, 2) the myocardial glycogen levels, 3) ultrastructural changes of light and electron microscopy, and 4) mitochondrial respiration. RESULTS: 1) The experimental model, coarctation of the aorta induced left ventricular hypertrophy; 2) the temporal evolution of the glycogen levels in hypertrophic myocardium demonstrates that there is a significant decrease; 3) It was observed a time-dependent trend of higher oxygen consumption values in the hypertrophic group; 4) there was a significant time-dependent decrease in the respiratory coefficient rate in the hypertrophic group; 5) the stoichiometries values of the ADP: O2 revealed the downward trend of the values of the hypertrophic group; 6) It was possible to observe damaged mitochondria from hypertrophic myocardium emphasizing the large heterogeneity of data. CONCLUSION: The acquisition of biochemical data, especially the increase in speed of glycogen breakdown, when anatomical changes are not detected, represents an important result even when considering all the difficulties inherent in the process of translating experimental results into clinical practice. With regard to the adopted methods, it is clear that morphometric methods are less specific. Otherwise, the biochemical data allow detecting alterations of glycogen concentrations and mitochondria respiration before the morphometric alterations should be detected
Resumo:
Two experiments were carried out with twenty-four male weaned Holstein calves to verify the influence of different dietary cation-anion concentrate and roughage proportions on calves metabolism. In the first experiment, calves were fed rations with -100, +200 and +400 mEq cation-anion balance/kg of dry matter, containing 60% of roughage and 40% of concentrate. In the second experiment, calves (117.6±20.8 kg average weight) received rations with similar dietary cation-anion balance but in diets of 40% roughage and 60% concentrate. As the dietary cation-anion balance became more positive, there was a quadratic response of blood pH in both diets with 60 and 40% roughage. A linear increase following increased dietary cation-anion balance was observed on bicarbonate concentration, carbon dioxide tension, carbon dioxide partial pressure and urine pH on both experiments, while anion gap decreased linearly. Blood urea nitrogen and base excess increased quadratically according to increased dietary cation-anion balance on 60% roughage, whereas those same parameters showed a linear increase on 40% roughage. Growing ruminant metabolism both in cationic and anionic diets was modified when the roughage:concentrate ratio was altered.