20 resultados para membranes

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membranes of Poly(2,5-benzimidazole) (ABPBI), prepared by polycondensation in polyphosphoric acid, were characterized from the fuel cell application point of view: mechanical properties of the membranes for different acid doping levels, thermal stability, permeability for the different gases/vapors susceptible of use in the cell (hydrogen, oxygen, methanol and ethanol), electro-osmotic water drag coefficient, oxidation stability to hydroxyl radicals, phosphoric acid leaching rate and, finally, in-plane membrane conductivity. ABPBI membranes presented an excellent thermal stability, above 500 degrees C in oxygen, suitable mechanical properties for high phosphoric acid doping levels, a low methanol and ethanol limiting permeation currents, and oxygen permeability compared to Nafion membranes, and a low phosphoric acid leaching rate when exposed to water vapor. On the contrary, hydrogen permeation current was higher than that of Nafion, and the chemical stability was very limited. Membrane conductivity achieved 0.07 S cm(-1) after equilibration with a humid environment. Fuel cell tests showed reasonable good performances, with a maximum power peak of 170 mW cm(-2) for H-2/air at 170 degrees C operating under a humidified hydrogen stream, 39.9 mW cm(-2) for CH3OH/O-2 at 200 degrees C for a methanol/water weight ratio of 1: 2, and 31.5 mW cm(-2) for CH3CH2OH/O-2 at the same conditions than for methanol. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.014207jes] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to characterize the physicochemical properties of bacterial cellulose (BC) membranes functionalized with osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP[10-14], and to evaluate in vitro osteoinductive potential in early osteogenesis, besides, to evaluate cytotoxic, genotoxic and/or mutagenic effects. Peptide incorporation into the BC membranes did not change the morphology of BC nanofibers and BC crystallinity pattern. The characterization was complemented by Raman scattering, swelling ratio and mechanical tests. In vitro assays demonstrated no cytotoxic, genotoxic or mutagenic effects for any of the studied BC membranes. Culture with osteogenic cells revealed no difference in cell morphology among all the membranes tested. Cell viability/proliferation, total protein content, alkaline phosphatase activity and mineralization assays indicated that BC-OGP membranes enabled the highest development of the osteoblastic phenotype in vitro. In conclusion, the negative results of cytotoxicity, genotoxicity and mutagenicity indicated that all the membranes can be employed for medical supplies, mainly in bone tissue engineering/regeneration, due to their osteoinductive properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effect of various casting solution salt dopants with similar cations, but different anions: (NaPO3)(6), Na2SO4, Na2CO3, NaCl, and NaF, on the morphology and performance of polyethersulfone ultrafiltration membranes was evaluated. The phase inversion process was used to produce all membranes using an 18% polyethersulfone in n-methylpyrrolidone casting solution and water as the non-solvent. Scanning electron microscopy (SEM) images of the membrane cross-section and surface pores were used to determine the specific anion effects on membrane morphology. The SEM images depicted significant changes to the membrane internal structure and pore size with respect to the type and concentration of the casting solution anion dopant. Membrane permeability, molecular weight cut-off, alginate retention, and susceptibility to fouling were evaluated using ultrapure water dead-end and ultrapure water, aqueous polyethylene glycol, aqueous sodium alginate, and natural surface water cross-flow filtration tests. Among the anions evaluated, hexametaphosphate doped at 1% w/w to the polymer resulted in the membrane with highest dead-end permeability at 490 LMH-bar (2- to 3-fold greater than the control), greatest alginate retention at 96.5%, and lowest susceptibility to fouling. The significant increase in membrane performance indicates that the hexametaphosphate anion has great potential to be used as a membrane casting solution dopant. It was also clearly demonstrated that membrane pore morphological characteristics can be effectively used to predict drinking water treatment performance. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144: 13-29, 2005). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144: 13-29, 2005), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green's theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlations between GABA(A) receptor (GABA(A)-R) activity and molecular organization of synaptosomal membranes (SM) were studied along the protocol for cholesterol (Cho) extraction with beta-cyclodextrin (beta-CD). The mere pre-incubation (PI) at 37A degrees C accompanying the beta-CD treatment was an underlying source of perturbations increasing [H-3]-FNZ maximal binding (70%) and K (d) (38%), plus a stiffening of SMs' hydrocarbon core region. The latter was inferred from an increased compressibility modulus (K) of SM-derived Langmuir films, a blue-shifted DPH fluorescence emission spectrum and the hysteresis in DPH fluorescence anisotropy (A (DPH)) in SMs submitted to a heating-cooling cycle (4-37-4A degrees C) with A (DPH,heating) < A (DPH,cooling). Compared with PI samples, the beta-CD treatment reduced B (max) by 5% which correlated with a 45%-decrement in the relative Cho content of SM, a decrease in K and in the order parameter in the EPR spectrum of a lipid spin probe labeled at C5 (5-SASL), and significantly increased A (TMA-DPH). PI, but not beta-CD treatment, could affect the binding affinity. EPR spectra of 5-SASL complexes with beta-CD-, SM-partitioned, and free in solution showed that, contrary to what is usually assumed, beta-CD is not completely eliminated from the system through centrifugation washings. It was concluded that beta-CD treatment involves effects of at least three different types of events affecting membrane organization: (a) effect of PI on membrane annealing, (b) effect of residual beta-CD on SM organization, and (c) Cho depletion. Consequently, molecular stiffness increases within the membrane core and decreases near the polar head groups, leading to a net increase in GABA(A)-R density, relative to untreated samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrao FM, Lara LS, Axelband F, Dias J, Carmona AK, Reis RI, Costa-Neto CM, Vieyra A, Lowe J. Exposure of luminal membranes of LLC-PK1 cells to ANG II induces dimerization of AT(1)/AT(2) receptors to activate SERCA and to promote Ca2+ mobilization. Am J Physiol Renal Physiol 302: F875-F883, 2012. First published January 4, 2012; doi:10.1152/ajprenal.00381.2011.-ANG II is secreted into the lumens of proximal tubules where it is also synthesized, thus increasing the local concentration of the peptide to levels of potential physiological relevance. In the present work, we studied the effect of ANG II via the luminal membranes of LLC-PK1 cells on Ca2+-ATPase of the sarco(endo) plasmic reticulum (SERCA) and plasma membrane (PMCA). ANG II (at concentrations found in the lumen) stimulated rapid (30 s) and persistent (30 min) SERCA activity by more than 100% and increased Ca2+ mobilization. Pretreatment with ANG II for 30 min enhanced the ANG II-induced Ca2+ spark, demonstrating a positively self-sustained stimulus of Ca2+ mobilization by ANG II. ANG II in the medium facing the luminal side of the cells decreased with time with no formation of metabolites, indicating peptide internalization. ANG II increased heterodimerization of AT(1) and AT(2) receptors by 140%, and either losartan or PD123319 completely blocked the stimulation of SERCA by ANG II. Using the PLC inhibitor U73122, PMA, and calphostin C, it was possible to demonstrate the involvement of a PLC -> DAG(PMA)-> PKC pathway in the stimulation of SERCA by ANG II with no effect on PMCA. We conclude that ANG II triggers SERCA activation via the luminal membrane, increasing the Ca2+ stock in the reticulum to ensure a more efficient subsequent mobilization of Ca2+. This first report on the regulation of SERCA activity by ANG II shows a new mechanism for Ca2+ homeostasis in renal cells and also for regulation of Ca2+-modulated fluid reabsorption in proximal tubules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liposomes have been an excellent option as drug delivery systems, since they are able of incorporating lipophobic and/or lipophilic drugs, reduce drug side effects, increase drug targeting, and control delivery. Also, in the last years, their use reached the field of gene therapy, as non-viral vectors for DNA delivery. As a strategy to increase system stability, the use of polymerizable phospholipids has been proposed in liposomal formulations. In this work, through differential scanning calorimetry (DSC) and electron spin resonance (ESR) of spin labels incorporated into the bilayers, we structurally characterize liposomes formed by a mixture of the polymerizable lipid diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) and the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in a 1:1 molar ratio. It is shown here that the polymerization efficiency of the mixture (c.a. 60%) is much higher than that of pure DC8,9PC bilayers (c.a. 20%). Cationic amphiphiles (CA) were added, in a final molar ratio of 1:1:0.2 (DC8,9PC:DMPC:CA), to make the liposomes possible carriers for genetic material, due to their electrostatic interaction with negatively charged DNA. Three amphiphiles were tested, 1,2-dioleoyl-3-trimetylammonium-propane (DOTAP), stearylamine (SA) and trimetyl (2-miristoyloxietyl) ammonium chloride (MCL), and the systems were studied before and after UV irradiation. Interestingly, the presence of the cationic amphiphiles increased liposomes polymerization. MCL displaying the strongest effect. Considering the different structural effects the three cationic amphiphiles cause in DC8,9PC bilayers, there seem to be a correlation between the degree of DC8,9PC polymerization and the packing of the membrane at the temperature it is irradiated (gel phase). Moreover, at higher temperatures, in the bilayer fluid phase, more polymerized membranes are significantly more rigid. Considering that the structure and stability of liposomes at different temperatures can be crucial for DNA binding and delivery, we expect the study presented here contributes to the production of new carrier systems with potential applications in gene therapy. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nafion membranes series N117 doped with ammonium, at different cation fractions (H+/NH4+), were investigated for ionic transport and water vapor uptake, for several water activities and temperatures. Ammonium cations change both properties of the polymer in a similar manner. Membrane ionic conductivity and water vapor uptake (lambda) decrease as the ammonium concentration increases in the polymer. Ionic transport activation energies are calculated and the transport mechanism of ammonium ions in Nafion is discussed. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.040203jes] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we examine the interaction between the 13-residue cationic antimicrobial peptide (AMP) tritrpticin (VRRFPWWWPFLRR, TRP3) and model membranes of variable lipid composition. The effect on peptide conformational properties was investigated by means of CD (circular dichroism) and fluorescence spectroscopies. Based on the hypothesis that the antibiotic acts through a mechanism involving toroidal pore formation, and taking into account that models of toroidal pores imply the formation of positive curvature, we used large unilamellar vesicles (LUV) to mimic the initial step of peptide-lipid interaction, when the peptide binds to the bilayer membrane, and micelles to mimic the topology of the pore itself, since these aggregates display positive curvature. In order to more faithfully assess the role of curvature, micelles were prepared with lysophospholipids containing (qualitatively and quantitatively) head groups identical to those of bilayer phospholipids. CD and fluorescence spectra showed that, while TRP3 binds to bilayers only when they carry negatively charged phospholipids. binding to micelles occurs irrespective of surface charge, indicating that electrostatic interactions play a less predominant role in the latter case. Moreover, the conformations acquired by the peptide were independent of lipid composition in both bilayers and micelles. However, the conformations were different in bilayers and in micelles, suggesting that curvature has an influence on the secondary structure acquired by the peptide. Fluorescence data pointed to an interfacial location of TRP3 in both types of aggregates. Nevertheless, experiments with a water soluble fluorescence quencher suggested that the tryptophan residues are more accessible to the quencher in micelles than in bilayers. Thus, we propose that bilayers and micelles can be used as models for the two steps of toroidal pore formation. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymers from natural sources are particularly useful as biomaterials for medical devices applications. In this study, the results of characterization of a gelatin network electrolyte doped with europium triflate (Eu(CF3SO3)(3)) are described. The unusual electronic properties of the trivalent lanthanide ions make them well suited as luminescent reporter groups, with many applications in biotechnology. Samples of solvent-free electrolytes were prepared with a range of guest salt concentration. Materials based on Eu(CF3SO3)(3) were obtained as mechanically robust, flexible, transparent, and completely amorphous films. Samples were characterized by thermal analysis (thermo-gravimetry analysis (TGA) and differential scanning calorimetry (DSC), electrochemical stability, scanning electronmicroscopy (SEM), and photoluminescence spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The success of semen cryopreservation is influenced by several factors, such as freezing curves and cryoprotectants. These two factors are of special interest once they may lead to many important physical-chemical changes resulting in different degrees of damage in spermatozoa structure. This experiment was designed to compare the effect of bull semen cryopreservation using two freezing techniques: conventional (CT cooling rate of -0.55 degrees C min-1 and freezing rate of -19.1 degrees C min-1) and automated (AT cooling rate of -0.23 degrees C min-1 and freezing rate of -15 degrees C min-1), performed with different curves, and with three cryoprotectants (glycerol, ethylene glycol and dimethyl formamide) on bovine sperm motility and integrity of plasma, acrosomal and mitochondrial membranes. These variables were simultaneously evaluated using the fluorescence probes propidium iodide, fluorescein-conjugated Pisum sativum agglutinin and MitoTracker Green FM. The effects of freezing techniques, as well as of different cryoprotectants were analysed by the analysis of variance. The means were compared by Fishers test. There were no significant differences between freezing techniques (P > 0.05). Glycerol showed higher percentages of motility, vigour and integrity of plasma, acrosomal and mitochondrial membranes than other two cryoprotectants (P < 0.05). Ethylene glycol preserved higher motility and integrity of plasma and mitochondrial membranes than dimethyl formamide (P < 0.05). Sperm motility with glycerol was 30.67 +/- 1.41% and 30.50 +/- 1.06%, with ethylene glycol was 21.17 +/- 1.66% and 21.67 +/- 1.13% and with dimethyl formamide was 8.33 +/- 0.65% and 9.17 +/- 0.72% to CT and AT curves, respectively. The percentage of spermatozoa with simultaneously intact plasma membrane, intact acrosome and mitochondrial function (IPIAH) was 14.82 +/- 1.49% (CT) and 15.83 +/- 1.26% (AT) to glycerol, 9.20 +/- 1.31% (CT) and 9.92 +/- 1.29% (AT) to ethylene glycol 4.65 +/- 0.93% (CT) and 5.17 +/- 0.87% (AT) to dimethyl formamide. Glycerol provided the best results, although nearly 85% of spermatozoa showed some degree of injury in their membranes, suggesting that further studies are required to improve the results of cryopreservation of bovine semen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasticized natural macromolecules-based polymer electrolyte samples were prepared and characterized. The plasticization of chitosonium acetate with glycerol increased the ionic conductivity value from 3.0 x 10(-7) S/cm to 1.1 x 10(-5) S/cm. The conductivity temperature relationship of the samples exhibits either VTF or Arrhenius type depending on the glycerol concentration in the sample. The dielectric studies evidencing the relaxation process in the plasticized sample at low frequency region are due to the electric polarization effect. Moreover, the samples were transparent in the Vis region, showed thermal stability up to 160 degrees C and good surface uniformity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates gel polymer electrolytes (GPEs) based on sodium alginate plasticized with glycerol containing either CH3COOH or LiClO4. The membranes showed ionic conductivity results of 3.1 x 10(-4) S/cm for the samples with LiClO4 and 8.7x10(-5) S/cm for the samples with CH3COOH at room temperature. The samples also showed thermal stability up to 160 degrees C, transparency of up to 90%, surface uniformity and adhesion to glass and steel. Moreover, Dynamic Mechanical Analysis revealed two relaxations for both samples and the Ea values were between 18 and 36 kJ/mol. All the results obtained indicate that alginate-based GPEs can be used as electrolytes in electrochemical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite fibers based on multi-walled carbon nanotubes (MWCNT) and poly(lactic acid) (PLA) were prepared by solution blow spinning (SBS). Fiber morphology was characterized by scanning electron microscopy (SEM) and optical microscopy (OM). Electrical, thermal, surface and crystalline properties of the spun fibers were evaluated, respectively, by conductivity measurements (4-point probe), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), contact angle and X-ray diffraction (XRD). OM analysis of the spun mats showed a poor dispersion of MWCNT in the matrix, however dispersion in solution was increased during spinning where droplets of PLA in solution loaded with MWCNT were pulled by the pressure drop at the nozzle, producing PLA fibers filled with MWCNT. Good electrical conductivity and hydrophobicity can be achieved at low carbon nanotube contents. When only 1 wt% MWCNT was added to low-crystalline PLA, surface conductivity of the composites increased from 5 x 10(-8) to 0.46 S/cm. Addition of MWCNT can slightly influence the degree of crystallinity of PLA fibers as studied by XRD and DSC. Thermogravimetric analyses showed that MWCNT loading can decrease the onset degradation temperature of the composites which was attributed to the catalytic effect of metallic residues in MWCNT. Moreover, it was demonstrated that hydrophilicity slightly increased with an increase in MWCNT content. These results show that solution blow spinning can also be used to produce nanocomposite fibers with many potential applications such as in sensors and biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic conducting membranes of gelatin plasticized with glycerol and containing LiI/I-2 have been obtained and characterized by X-ray diffraction measurements, UV-Vis-NIR spectroscopy, thermal analysis and impedance spectroscopy. The transparent (80-90% in the visible range) membranes showed ionic conductivity value of 5 x 10(-5) S/cm at room temperature, which increased to 3 x 10(-3) S/cm at 80 degrees C. All the ionic conductivity measurements as a function of temperature showed VTF dependence and activation energy of 8 kJ/mol. These samples also showed low glass transition temperature of -76 degrees C. Moreover the samples were predominantly amorphous. The membranes applied to small electrochromic devices showed 20% of color change from colored to bleached states during more than 70 cronoamperometric cycles.