11 resultados para marker-assisted selection (MAS)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A data set of a commercial Nellore beef cattle selection program was used to compare breeding models that assumed or not markers effects to estimate the breeding values, when a reduced number of animals have phenotypic, genotypic and pedigree information available. This herd complete data set was composed of 83,404 animals measured for weaning weight (WW), post-weaning gain (PWG), scrotal circumference (SC) and muscle score (MS), corresponding to 116,652 animals in the relationship matrix. Single trait analyses were performed by MTDFREML software to estimate fixed and random effects solutions using this complete data. The additive effects estimated were assumed as the reference breeding values for those animals. The individual observed phenotype of each trait was adjusted for fixed and random effects solutions, except for direct additive effects. The adjusted phenotype composed of the additive and residual parts of observed phenotype was used as dependent variable for models' comparison. Among all measured animals of this herd, only 3160 animals were genotyped for 106 SNP markers. Three models were compared in terms of changes on animals' rank, global fit and predictive ability. Model 1 included only polygenic effects, model 2 included only markers effects and model 3 included both polygenic and markers effects. Bayesian inference via Markov chain Monte Carlo methods performed by TM software was used to analyze the data for model comparison. Two different priors were adopted for markers effects in models 2 and 3, the first prior assumed was a uniform distribution (U) and, as a second prior, was assumed that markers effects were distributed as normal (N). Higher rank correlation coefficients were observed for models 3_U and 3_N, indicating a greater similarity of these models animals' rank and the rank based on the reference breeding values. Model 3_N presented a better global fit, as demonstrated by its low DIC. The best models in terms of predictive ability were models 1 and 3_N. Differences due prior assumed to markers effects in models 2 and 3 could be attributed to the better ability of normal prior in handle with collinear effects. The models 2_U and 2_N presented the worst performance, indicating that this small set of markers should not be used to genetically evaluate animals with no data, since its predictive ability is restricted. In conclusion, model 3_N presented a slight superiority when a reduce number of animals have phenotypic, genotypic and pedigree information. It could be attributed to the variation retained by markers and polygenic effects assumed together and the normal prior assumed to markers effects, that deals better with the collinearity between markers. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Sugarcane-breeding programs take at least 12 years to develop new commercial cultivars. Molecular markers offer a possibility to study the genetic architecture of quantitative traits in sugarcane, and they may be used in marker-assisted selection to speed up artificial selection. Although the performance of sugarcane progenies in breeding programs are commonly evaluated across a range of locations and harvest years, many of the QTL detection methods ignore two- and three-way interactions between QTL, harvest, and location. In this work, a strategy for QTL detection in multi-harvest-location trial data, based on interval mapping and mixed models, is proposed and applied to map QTL effects on a segregating progeny from a biparental cross of pre-commercial Brazilian cultivars, evaluated at two locations and three consecutive harvest years for cane yield (tonnes per hectare), sugar yield (tonnes per hectare), fiber percent, and sucrose content. In the mixed model, we have included appropriate (co)variance structures for modeling heterogeneity and correlation of genetic effects and non-genetic residual effects. Forty-six QTLs were found: 13 QTLs for cane yield, 14 for sugar yield, 11 for fiber percent, and 8 for sucrose content. In addition, QTL by harvest, QTL by location, and QTL by harvest by location interaction effects were significant for all evaluated traits (30 QTLs showed some interaction, and 16 none). Our results contribute to a better understanding of the genetic architecture of complex traits related to biomass production and sucrose content in sugarcane.
Resumo:
Given the important role of leptin in metabolism, we looked for a possible association of leptin and leptin receptor polymorphisms with carcass and growth traits in Nellore cattle. We examined associations of leptin and leptin receptor SNPs with ultrasound carcass (longissimus dorsi muscle area (ribeye area), backfat thickness and rump fat thickness and growth traits (weaning weight adjusted to 210 days of age, yearling weight adjusted to 550 days of age, weight gain of weaning to yearling and scrotal circumference adjusted to 550 days of age) of 2162 Bos primigenius indicus (Nellore) animals. Allele and genotypic frequencies were calculated for each marker. Allele substitution, additive and dominance effects of the polymorphisms were also evaluated. Some alleles of the molecular markers had low frequencies, lower than 1%, in the sample analyzed, although the same polymorphisms described for B. p. taurus cattle were found. Due to very low allelic frequencies, the E2JW, A59V and UASMS2 markers were not included in the analysis, because they were almost fixed. E2FB was found to be significantly associated with weight gain, ribeye area and backfat thickness. The promoter region markers, C963T and UASMS1, were also found to be significantly associated with ribeye area. T945M was significantly associated with weight gain. We conclude that the leptin and receptor gene markers would be useful for marker-assisted selection.
Resumo:
Background: Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL) controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse. Results: QTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNA x CAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTL x environment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1(DG,UC) presented major effects (R-2 between 16% - 22%). This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4%) under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance. Conclusions: The results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b marker is a potential tool for marker assisted selection for ALS resistance.
Resumo:
The identification of quantitative trait loci (QTL) and marker-assisted selection with a view to breeding programs have aroused great interest, including for cashew improvement. This study identified QTL for yield-related traits: nut weight, male and hermaphrodite flowers. The traits were evaluated in 71 F-1 genotypes of the cross CCP 1001 x CP 96. The methods of interval mapping and multiple QTL mapping were applied to identify QTL. Eleven QTL were detected: three for nut weight, four for male flowers and four for hermaphrodite flowers. The QTL accounted for 3.79 to 12.98 % of the total phenotypic variance and had phenotypic effects of -31.81 to 34.25 %. The potential for marker-assisted selection of the QTL hf-2f and hf-3m is great and the phenotypic effects and percentage of phenotypic variation higher than of the others.
Resumo:
Oil content and grain yield in maize are negatively correlated, and so far the development of high-oil high-yielding hybrids has not been accomplished. Then a fully understand of the inheritance of the kernel oil content is necessary to implement a breeding program to improve both traits simultaneously. Conventional and molecular marker analyses of the design III were carried out from a reference population developed from two tropical inbred lines divergent for kernel oil content. The results showed that additive variance was quite larger than the dominance variance, and the heritability coefficient was very high. Sixteen QTL were mapped, they were not evenly distributed along the chromosomes, and accounted for 30.91% of the genetic variance. The average level of dominance computed from both conventional and QTL analysis was partial dominance. The overall results indicated that the additive effects were more important than the dominance effects, the latter were not unidirectional and then heterosis could not be exploited in crosses. Most of the favorable alleles of the QTL were in the high-oil parental inbred, which could be transferred to other inbreds via marker-assisted backcross selection. Our results coupled with reported information indicated that the development of high-oil hybrids with acceptable yields could be accomplished by using marker-assisted selection involving oil content, grain yield and its components. Finally, to exploit the xenia effect to increase even more the oil content, these hybrids should be used in the Top Cross((TM)) procedure.
Resumo:
The objective of this study was to describe the VNTR polymorphism of the mucin 1 gene (MUC1) in three Nelore lines selected for yearling weight to determine whether allele and genotype frequencies of this polymorphism were affected by selection for growth. In addition, the effects of the polymorphism on growth and carcass traits were evaluated. Birth, weaning and yearling weights, rump height, Longissimus muscle area, backfat thickness, and rump fat thickness, were analyzed. A total of 295 Nelore heifers from the Beef Cattle Research Center, Instituto de Zootecnia de Sertozinho, were used, including 41 of the control line, 102 of the selection line and 152 of the traditional. The selection and traditional lines comprise animals selected for higher yearling weight, whereas control line animals are selected for yearling weight close to the average. Five alleles were identified, with allele 1 being the most frequent in the three lines, especially in the lines selected for higher means for yearling weight. Heterozygosity was significantly higher in the control line. Association analyses showed significant effects of allele 1 on birth weight and weaning weight while the allele 3 exert significant effects on yearling weight and back fat thickness. Despite these findings, application of this marker to marker-assisted selection requires more consistent results based on the genotyping of a larger number of animals in order to increase the accuracy of the statistical analyses.
Resumo:
Abstract Background Banana cultivars are mostly derived from hybridization between wild diploid subspecies of Musa acuminata (A genome) and M. balbisiana (B genome), and they exhibit various levels of ploidy and genomic constitution. The Embrapa ex situ Musa collection contains over 220 accessions, of which only a few have been genetically characterized. Knowledge regarding the genetic relationships and diversity between modern cultivars and wild relatives would assist in conservation and breeding strategies. Our objectives were to determine the genomic constitution based on Internal Transcribed Spacer (ITS) regions polymorphism and the ploidy of all accessions by flow cytometry and to investigate the population structure of the collection using Simple Sequence Repeat (SSR) loci as co-dominant markers based on Structure software, not previously performed in Musa. Results From the 221 accessions analyzed by flow cytometry, the correct ploidy was confirmed or established for 212 (95.9%), whereas digestion of the ITS region confirmed the genomic constitution of 209 (94.6%). Neighbor-joining clustering analysis derived from SSR binary data allowed the detection of two major groups, essentially distinguished by the presence or absence of the B genome, while subgroups were formed according to the genomic composition and commercial classification. The co-dominant nature of SSR was explored to analyze the structure of the population based on a Bayesian approach, detecting 21 subpopulations. Most of the subpopulations were in agreement with the clustering analysis. Conclusions The data generated by flow cytometry, ITS and SSR supported the hypothesis about the occurrence of homeologue recombination between A and B genomes, leading to discrepancies in the number of sets or portions from each parental genome. These phenomenons have been largely disregarded in the evolution of banana, as the “single-step domestication” hypothesis had long predominated. These findings will have an impact in future breeding approaches. Structure analysis enabled the efficient detection of ancestry of recently developed tetraploid hybrids by breeding programs, and for some triploids. However, for the main commercial subgroups, Structure appeared to be less efficient to detect the ancestry in diploid groups, possibly due to sampling restrictions. The possibility of inferring the membership among accessions to correct the effects of genetic structure opens possibilities for its use in marker-assisted selection by association mapping.
Resumo:
Abstract Background The database of sugarcane expressed sequence tags (EST) offers a great opportunity for developing molecular markers that are directly associated with important agronomic traits. The development of new EST-SSR markers represents an important tool for genetic analysis. In sugarcane breeding programs, functional markers can be used to accelerate the process and select important agronomic traits, especially in the mapping of quantitative traits loci (QTL) and plant resistant pathogens or qualitative resistance loci (QRL). The aim of this work was to develop new simple sequence repeat (SSR) markers in sugarcane using the sugarcane expressed sequence tag (SUCEST database). Findings A total of 365 EST-SSR molecular markers with trinucleotide motifs were developed and evaluated in a collection of 18 genotypes of sugarcane (15 varieties and 3 species). In total, 287 of the EST-SSRs markers amplified fragments of the expected size and were polymorphic in the analyzed sugarcane varieties. The number of alleles ranged from 2-18, with an average of 6 alleles per locus, while polymorphism information content values ranged from 0.21-0.92, with an average of 0.69. The discrimination power was high for the majority of the EST-SSRs, with an average value of 0.80. Among the markers characterized in this study some have particular interest, those that are related to bacterial defense responses, generation of precursor metabolites and energy and those involved in carbohydrate metabolic process. Conclusions These EST-SSR markers presented in this work can be efficiently used for genetic mapping studies of segregating sugarcane populations. The high Polymorphism Information Content (PIC) and Discriminant Power (DP) presented facilitate the QTL identification and marker-assisted selection due the association with functional regions of the genome became an important tool for the sugarcane breeding program.
Resumo:
Laryngeal squamous cell carcinoma is one of the most common malignant neoplasms of the head and neck. In Brazil, laryngeal tumors represent 2% of all cancers and are associated with approximately 3,000 deaths annually. Human papillomavirus (HPV) has been reported to play an important role in the etiology of laryngeal cancer. The aim of the present study was to evaluate the expression of p53, p27, and Mdm2 in laryngeal carcinomas. Sixty-three larynx biopsies were selected for the study, including 9 in situ laryngeal carcinomas, 27 laryngeal carcinomas without metastasis and 27 laryngeal carcinomas with metastasis. Twenty-seven cervical lymph nodes from patients with metastatic lesions were also evaluated. The expression levels of p53, p27, and Mdm2 were assessed by immunohistochemistry using a computer-assisted system. HPV detection and typing were performed using PCR, and the HPV types that were evaluated included HPV 6, 11, 16, 18, 31 and 33. Out of 63 patients, 53 (84.1%) were positive for beta-globin (internal control), and 10 (15.9%) were beta-globin negative and therefore excluded from the evaluation. Thus, 7 (13.2%) out of 53 patients were HPV positive, and 46 (86.8%) out of 53 patients were HPV negative. Statistically significant differences (p < 0.05) in Mdm2 expression levels were observed in the in situ laryngeal carcinoma samples compared with the laryngeal carcinoma samples with metastasis. No statistically significant differences (p > 0.05) in either p53 or p27 expression levels were detected. These findings suggest that Mdm2 may be associated with the invasiveness and aggressiveness of laryngeal carcinomas.
Resumo:
The objective of this study was to evaluate the quality of bovine frozen-thawed sperm cells after Percoll gradient centrifugation. Frozen semen doses were obtained from six bulls of different breeds, including three taurine and three Zebu animals. Four ejaculates per bull were evaluated before and after discontinuous Percoll gradient centrifugation. Sperm motility was assessed by computer-assisted semen analysis and the integrity of the plasma and acrosomal membranes, as well as mitochondrial function, were evaluated using a combination of fluorescent probes propidium iodide, fluorescein isothiocyanate-conjugated Pisum sativum agglutinin and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide. The procedure of Percoll gradient centrifugation increased the percentage of total and progressive sperm motility, beat frequency, rectilinear motility, linearity and rapidly moving cells. In addition, the percentage of cells with intact plasma membrane and mitochondrial membrane potential was increased in post-centrifugation samples. However, the percentage of sperm cells with intact acrosomal membrane was markedly reduced. The method used selected the motile cells with intact plasma membrane and higher mitochondrial functionality in frozen-thawed bull semen, but processing, centrifugation and/or the Percoll medium caused damage to the acrosomal membrane.