8 resultados para maltose utilization
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.
Resumo:
The screening. biomass growth of lipase-producing fungus isolated from different sources and available at URM (University Recife Mycologia). as well as, the immobilization and utilization of the whole cells for the transesterification of babassu oil were investigated. Rhizopus oryzae (URM 3231, 4692), Mucor circinelloides (URM 4140, 4182) and Penicillium citrinum URM 4216 were considered to be good intracellular lipase producers whereas those from Mucor hiemalis URM 4144 and Mucor piriformis URM 4145 were weaker. Fungi biomass containing high lipase activities was immobilized on different biomass support particles (BSPs) and with the exception of Penicillium citrinum URM 4216 all the other fungi strains exhibited high lipase activity (20-50 Ug(-1)) when immobilized in situ using polyurethane foam particles. Transesterification activities of the immobilized whole cells were evaluated in the ethanolysis reaction with babassu oil and the highest performance was attained by M. circinelloides URM 4182 giving 83.22 +/- 3.68% ester yield in less than 96 h reaction. The biocatalyst operational stability was also assessed and an inactivation profile was found to follow the Arrhenius model, revealing values of 26 days and 2.6 x 10(-2)day(-1), for half-life and a deactivation coefficient, respectively. The purified product (biodiesel) exhibited viscosity (6.63 cSt) close to the value to attend specifications by the ASTM 06751 to be used as biofuel. Results are favorable compared with data already reported in the literature and demonstrated that M. circinelloides URM 4182 whole cells is a cheaper biocatalyst that can be used in the biodiesel synthesis. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work was to evaluate the utilization by corn plants of P from triple superphosphate fertilizer labeled with P-32 (P-32-TSP), and of P from soil as affected by N rates and by the green manures (GM) sunn hemp (Crotalaria juncea) and millet (Pennisetum glaucum). The experiment was carried out using pots filled with 5 kg Oxisol (Rhodic Hapludox). A completely randomized design was used, in a 4x4x2 factorial arrangement, with four replicates. The treatments were: four P rates as TSP (0, 0.175, 0.350, and 0.700 g P per pot); four N rates as urea (0, 0.75, 1.50, and 2.25 g N per pot); and sunn hemp or millet as green manure. The additions of N and P by the GM were taken into account. After grain physiologic maturation, corn dry matter, P contents, accumulated P, and P recovery in the different treatments were measured. P-32-TSP recovery by corn increased with N increasing rates, and decreased with increasing rates of P-32-TSP. The mineral fertilizer provides most of the accumulated P by corn plants. The recovery of P-32-TSP by corn was 13.12% in average. The green manure species influence the assimilation of P-32-TSP by the plants.
Resumo:
This paper sets forth a Neo-Kaleckian model of capacity utilization and growth with distribution featuring a profit-sharing arrangement. While a given proportion of firms compensate workers with only a base wage, the remaining proportion do so with a base wage and a share of profits. Consistent with the empirical evidence, workers hired by profit-sharing firms have a higher productivity than their counterparts in base-wage firms. While a higher profit-sharing coefficient raises capacity utilization and growth irrespective of the distribution of compensation strategies across firms, a higher frequency of profit-sharing firms does likewise only if the profit-sharing coefficient is sufficiently high.
Resumo:
BACKGROUND: The characteristics of blood recipients including diagnoses associated with transfusion and posttransfusion survival are unreported in Brazil. The goals of this analysis were: 1) to describe blood utilization according to clinical diagnoses and patient characteristics and 2) to determine the factors associated with survival of blood recipients. STUDY DESIGN AND METHODS: A retrospective cross-sectional analysis was conducted on all inpatients in 2004. Data came from three sources: The first two files consist of data about patient characteristics, clinical diagnosis, and transfusion. Analyses comparing transfused and nontransfused patients were conducted. The third file was used to determine survival recipients up to 3 years after transfusion. Logistic regression was conducted among transfused patients to examine characteristics associated with survival. RESULTS: In 2004, a total of 30,779 patients were admitted, with 3835 (12.4%) transfused. These patients had 10,479 transfusions episodes, consisting of 39,561 transfused components: 16,748 (42%) red blood cells, 15,828 (40%) platelets (PLTs), and 6190 (16%) plasma. The median number of components transfused was three (range, 1-656) per patient admission. Mortality during hospitalization was different for patients whose admissions included transfusion or not (24% vs. 4%). After 1 year, 56% of transfusion recipients were alive. The multivariable model of factors associated with mortality after transfusion showed that the most significant factors in descending order were hospital ward, increasing age, increasing number of components transfused, and type of components received. CONCLUSION: Ward and transfusion are markers of underlying medical conditions and are associated with the probability of survival. PLT transfusions are common and likely reflect the types of patients treated. This comprehensive blood utilization study, the first of its kind in Brazil, can help in developing transfusion policy analyses in South America.
Resumo:
Objective: Major Depressive Disorder (MDD) is a debilitating condition with a marked social impact. The impact of MDD and Treatment-Resistant Depression (TRD+) within the Brazilian health system is largely unknown. The goal of this study was to compare resource utilization and costs of care for treatment-resistant MDD relative to non-treatment-resistant depression (TRD-). Methods: We retrospectively analyzed the records of 212 patients who had been diagnosed with MDD according to the ICD-10 criteria. Specific criteria were used to identify patients with TRD+. Resource utilization was estimated, and the consumption of medication was annualized. We obtained information on medical visits, procedures, hospitalizations, emergency department visits and medication use related or not to MDD. Results: The sample consisted of 90 TRD+ and 122 TRD-patients. TRD+ patients used significantly more resources from the psychiatric service, but not from non-psychiatric clinics, compared to TRD-patients. Furthermore, TRD+ patients were significantly more likely to require hospitalizations. Overall, TRD+ patients imposed significantly higher (81.5%) annual costs compared to TRD-patients (R$ 5,520.85; US$ 3,075.34 vs. R$ 3,042.14; US$ 1,694.60). These findings demonstrate the burden of MDD, and especially of TRD+ patients, to the tertiary public health system. Our study should raise awareness of the impact of TRD+ and should be considered by policy makers when implementing public mental health initiatives.
Resumo:
Ten yeast strains were evaluated concerning their capabilities to assimilate biodiesel-derived glycerol in batch cultivation. The influence of glycerol concentration, temperature, pH and yeast extract concentration on biomass production was studied for the yeast selected. Further, the effect of agitation on glycerol utilization by the yeast Hansenula anomala was also studied. The yeast H. anomala CCT 2648 showed the highest biomass yield (0.30 g g(-1)) and productivity (0.19 g L-1 h(-1)). Citric acid, succinic acid, acetic acid and ethanol were found as the main metabolites produced. The increase of yeast extract concentration from 1 to 3 g L-1 resulted in high biomass production. The highest biomass concentration (21 g L-1), yield (0.45 g g(-1)) and productivity (0.31 g L-1 h(-1)), as well as ribonucleotide production (13.13 mg g(-1)), were observed at 700 rpm and 0.5 vvm. These results demonstrated that glycerol from biodiesel production process showed to be a feasible substrate for producing biomass and ribonucleotides by yeast species.
Resumo:
Background: The methods used for evaluating wound dimensions, especially the chronic ones, are invasive and inaccurate. The fringe projection technique with phase shift is a non-invasive, accurate and low-cost optical method. Objective: The aim is to validate the technique through the determination of dimensions of objects of known topography and with different geometries and colors to simulate the wounds and tones of skin color. Taking into account the influence of skin wound optical factors, the technique will be used to evaluate actual patients’ wound dimensions and to study its limitations in this application. Methods: Four sinusoidal fringe patterns, displaced ¼ of period each, were projected onto the objects surface. The object dimensions were obtained from the unwrapped phase map through the observation of the fringe deformations caused by the object topography and using phase shift analysis. An object with simple geometry was used for dimensional calibration and the topographic dimensions of the others were determined from it. After observing the compatibility with the data and validating the method, it was used for measuring the dimensions of real patients’ wounds. Results and Conclusions: The discrepancies between actual topography and dimensions determined with Fringe Projection Technique and for the known object were lower than 0.50 cm. The method was successful in obtaining the topography of real patient’s wounds. Objects and wounds with sharp topographies or causing shadow or reflection are difficult to be evaluated with this technique.