7 resultados para low temperature treatment
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The preparation of nanometer-sized structures of zinc oxide (ZnO) from zinc acetate and urea as raw materials was performed using conventional water bath heating and a microwave hydrothermal (MH) method in an aqueous solution. The oxide formation is controlled by decomposition of the added urea in the sealed autoclave. The influence of urea and the synthesis method on the final product formation are discussed. Broadband photoluminescence (PL) behavior in visible-range spectra was observed with a maximum peak centered in the green region which was attributed to different defects and the structural changes involved with ZnO crystals which were produced during the nucleation process.
Resumo:
A comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400 degrees C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (epsilon-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about similar to 43 mu m after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization, and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical field H-c1 approximate to 2 T in NiCl2-4SC(NH2)(2). A T-3/2 behavior in the specific heat and magnetization is observed at very low temperatures at H = H-c1, which is consistent with the universality class of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient at H-c1 shows minor deviations from the expected T-1/2 behavior. Our experimental study is complemented by analytical calculations and quantum Monte Carlo simulations, which reproduce nicely the measured quantities. We analyze the thermal and the magnetic Gruneisen parameters, which are ideal quantities to identify QCPs. Both parameters diverge at H-c1 with the expected T-1 power law. By using the Ehrenfest relations at the second-order phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field scales.
Resumo:
Many pathways can be used to synthesize polythiophenes derivatives. The polycondensation reactions performed with organometallics are preferred since they lead to regioregular polymers (with high content of heat-to-tail coupling) which have enhanced conductivity and luminescence. However, these pathways have several steps; the reactants are highly moisture sensitive and expensive. On the other hand, the oxidative polymerization using FeCl3 is a one-pot reaction that requires less moisture sensitive reactants with lower cost, although the most common reaction conditions lead to polymers with low regioregularity. Here, we report that by changing the reaction conditions, such as FeCl3 addition rate and reaction temperature, poly-3-octylthiophenes with different the regioregularities can be obtained, reaching about 80% of heat-to-tail coupling. Different molar mass distributions and polydispersivities were obtained. The preliminary results suggest that the oxidative polymerization process could be improved to yield polythiophenes with higher regioregularity degree and narrower molar mass distributions by just setting some reaction conditions. We also verified that it is possible to solvent extract part of the lower regioregular fraction of the polymer further improving the regioregularity degree. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
The effects of small fractions of calcium (x = 0, 0.05, 0.1, 0.15, and 0.20) on the structure and the catalytic properties of La2-xCaxCuO4 peroviskites have been investigated. The samples have been synthesized using the co-precipitation method. Perovskite-type oxides were characterized by XRD, TPR, XPS, XANES, SEM, and TEM. Catalytic tests for the water gas shift reaction (WGSR) were carried out in a tubular reactor at 290 degrees C. All samples showed a well-defined perovskite structure with surface areas between 6 and 18 m(2) g(-1). The partial substitution of La by Ca enhanced the stability of the perovskites and increased their reduction temperature. All catalysts were actives for WGSR, and the best catalytic performance was obtained for the La1.85Ca0.15CuO4 catalyst, but the samples with 5 and 10% of Ca had the best TOF values for reaction. These results can be associated to promoter effect of calcium, the high surface area, and the reducible species Cu-0 and Cu1+. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Brazil is one of the largest mango producers and the third largest mango exporter worldwide. Irradiation treatment and its commercial feasibility have been studied in our country to make it possible to develop new markets and, consequently, to compete with the major exporters of mangoes, Mexico and India. This work was designed to compare irradiation treatment with the hot water dip treatment in mangoes cv. Tommy Atkins for export and to verify that the main attributes for acceptance, color and texture, as well as carbohydrate and organic acid contents, were maintained. In this study, the fruit was divided into groups: control, hot water dip-treated (46 degrees C for 90 min), and irradiation-treated at doses of 0.4 kGy and 1.0 kGy. The fruit was stored at low temperature (11 degrees C +/- 2) for 14 days and then at room temperature (23 degrees C +/- 2) until the end of the study. The results indicated that the fruit given a dose of 1.0 kGy remained in a less advanced stage of ripening (stage 3) throughout the storage period, but experienced a greater loss of texture in the beginning of the experiment. It was noted that only the control group had higher levels of citric acid and succinic acid on the last day of the experiment. There were no significant differences in the total sugar content between any treatment groups. Gamma radiation can be used as a quarantine treatment and does not interfere negatively with the quality attributes of mangoes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Myofibril proteins have excellent filmogenic properties. The objective of this article was to study the effect of the thermal treatment, of the pH and of the plasticizer concentration (Cp) of the filmogenic solution (FS), using over some physical properties of edible films, using a surface and response methodology (SRM). Films were made of lyophilized myofibril proteins (LMP) extracted from bovine muscle, employing the technique of solubility obtained from diluted saline solutions. The films were elaborated from FS containing 1 g of LMP/100g of FS and from Cp of 50 g to 79 g of glycerin/100 g of LMP. The LMP was dispersed in water under moderate agitation, and the pH was kept at 2.5-3.5 with the use of acetic acid. The FS were submitted to thermal treatment at different temperatures for 45 minutes. Films were dried in ventilated oven at 37 degrees C/18hr, conditioned at 75% of relative humidity at 25 degrees C/48 hr before analysis of: mechanical properties by puncture test; apparent opacity by spectrophotometer; solubility by immersion in water; and water vapor permeability by the gravimetric method. In general, films showed good appearance, translucent, easily handled and touchable, except for the films formed with pH 2.5 and at a low temperature (35 degrees C), with a medium thickness of 0.400 +/- 0.005 mm. The pH of the FS significantly affected all the physical properties under study. The temperature of the thermal treatment of the FS greatly affected the force at the rupture, solubility and water vapor permeability. This treatment can promote intermolecular interactions through the formation of disulphide bonds; however a very intense treatment can reverse this effect by irreversible structural alterations in the proteins. The glycerol concentration affected considerably all the properties under study, with the exception of the apparent opacity. Plasticizer increases the mobility of macromolecules with consequences in all physical properties.