4 resultados para long terminal repeat

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. Results: Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. Conclusions: Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mobile elements are widely present in eukaryotic genomes. They are repeated DNA segments that are able to move from one locus to another within the genome. They are divided into two main categories, depending on their mechanism of transposition, involving RNA (class I) or DNA (class II) molecules. The mariner-like elements are class II transposons. They encode their own transposase, which is necessary and sufficient for transposition in the absence of host factors. They are flanked by a short inverted terminal repeat and a TA dinucleotide target site, which is duplicated upon insertion. The transposase consists of two domains, an N-terminal inverted terminal repeat binding domain and a C-terminal catalytic domain. We identified a transposable element with molecular characteristics of a mariner-like element in Atta sexdens rubropilosa genome. Identification started from a PCR with degenerate primers and queen genomic DNA templates, with which it was possible to amplify a fragment with mariner transposable-element homology. Phylogenetic analysis demonstrated that this element belongs to the mauritiana subfamily of mariner-like elements and it was named Asmar1. We found that Asmar1 is homologous to a transposon described from another ant, Messor bouvieri. The predicted transposase sequence demonstrated that Asmar1 has a truncated transposase ORF. This study is part of a molecular characterization of mobile elements in the Atta spp genome. Our finding of mariner-like elements in all castes of this ant could be useful to help understand the dynamics of mariner-like element distribution in the Hymenoptera.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Short tandem DNA repeats and telomerase compose the telomere structure in the vast majority of eukaryotic organisms. However, such a conserved organisation has not been found in dipterans. While telomeric DNA in Drosophila is composed of specific retrotransposons, complex terminal tandem repeats are present in chromosomes of Anopheles and chironomid species. In the sciarid Rhynchosciara americana, short repeats (16 and 22 bp long) tandemly arrayed seem to reach chromosome ends. Moreover, in situ hybridisation data using homopolymeric RNA probes suggested in this species the existence of a third putative chromosome end repeat enriched with (dA).(dT) homopolymers. In this work, chromosome micro-dissection and PCR primed by homopolymeric primers were employed to clone these repeats. Named T-14 and 93 % AT-rich, the repetitive unit is 14 bp long and appears organised in tandem arrays. It is localised in five non-centromeric ends and in four interstitial bands of R. americana chromosomes. To date, T-14 is the shortest repeat that has been characterised in chromosome ends of dipterans. As observed for short tandem repeats identified previously in chromosome ends of R. americana, the T-14 probe hybridised to bridges connecting non-homologous polytene chromosome ends, indicative of close association of T-14 repeats with the very end of the chromosomes. The results of this work suggest that R. americana represents an additional example of organism provided with more than one DNA sequence that is able to reach chromosome termini.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aim of the study: The natriuretic peptides, brain natriuretic peptide (BNP) and its N-terminal prohormone (NT-proBNP), can be used as diagnostic and prognostic markers for aortic stenosis (AS). However, the association between BNP, NT-proBNP, and long-term clinical outcomes in patients with severe AS remains uncertain. Methods: A total of 64 patients with severe AS was prospectively enrolled into the study, and underwent clinical and echocardiographic assessments at baseline. Blood samples were drawn for plasma BNP and NT-proBNP analyses. The primary outcome was death from any cause, through a six-year follow up period. Cox proportional hazards modeling was used to examine the association between natriuretic peptides and long-term mortality, adjusting for important clinical factors. Results: During a mean period of 1,520 681 days, 51 patients (80%) were submitted to aortic valve replacement, and 13 patients (20%) were medically managed without surgical interventions. Mortality rates were 13.7% in the surgical group and 62% in the medically managed group (p <0.001). Patients with higher plasma BNP (>135 pg/ml) and NT-proBNP (>1,150 pg/ml) levels at baseline had a greater risk of long-term mortality (hazard ratio [HR] 3.2, 95% confidence interval [CI] 1.1-9.1; HR 4.3, 95% CI 1.4-13.5, respectively). After adjusting for important covariates, both BNP and NT-proBNP remained independently associated with long-term mortality (HR 2.9, 95%CI 1.5-5.7; HR 1.8, 95%CI 1.1-3.1, respectively). Conclusion: In patients with severe AS, plasma BNP and NT-proBNP levels were associated with long-term mortality. The use of these biomarkers to guide treatment might represent an interesting approach that deserves further evaluation. The Journal of Heart Valve Disease 2012;21:331-336