7 resultados para local networks

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hierarchical multi-label classification is a complex classification task where the classes involved in the problem are hierarchically structured and each example may simultaneously belong to more than one class in each hierarchical level. In this paper, we extend our previous works, where we investigated a new local-based classification method that incrementally trains a multi-layer perceptron for each level of the classification hierarchy. Predictions made by a neural network in a given level are used as inputs to the neural network responsible for the prediction in the next level. We compare the proposed method with one state-of-the-art decision-tree induction method and two decision-tree induction methods, using several hierarchical multi-label classification datasets. We perform a thorough experimental analysis, showing that our method obtains competitive results to a robust global method regarding both precision and recall evaluation measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-supervised learning is one of the important topics in machine learning, concerning with pattern classification where only a small subset of data is labeled. In this paper, a new network-based (or graph-based) semi-supervised classification model is proposed. It employs a combined random-greedy walk of particles, with competition and cooperation mechanisms, to propagate class labels to the whole network. Due to the competition mechanism, the proposed model has a local label spreading fashion, i.e., each particle only visits a portion of nodes potentially belonging to it, while it is not allowed to visit those nodes definitely occupied by particles of other classes. In this way, a "divide-and-conquer" effect is naturally embedded in the model. As a result, the proposed model can achieve a good classification rate while exhibiting low computational complexity order in comparison to other network-based semi-supervised algorithms. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As one of the few areas apt for horticulture in Northern Chile's arid landscape, the prehistory of the Atacama oases is deeply enmeshed with that of the inter-regional networks that promoted societal development in the south central Andes. During the Middle Horizon (AD 5001000), local populations experienced a cultural apex associated with a substantial increase in inter-regional interaction, population density, and quantity and quality of mortuary assemblages. Here, we test if this cultural peak affected dietary practices equally among the distinct local groups of this period. We examine caries prevalence and the degree of occlusal wear in four series recovered from three cemeteries. Our results show a reduction in the prevalence of caries for males among an elite subsample from Solcor 3 and the later Coyo 3 cemeteries. Dental wear tends to increase over time with the Late Middle Horizon/Late Intermediate Period cemetery of Quitor 6 showing a higher average degree of wear. When considered in concert with archaeological information, we concluded that the Middle Horizon was marked by dietary variability wherein some populations were able to obtain better access to protein sources (e.g., camelid meat). Not all members of Atacameno society benefited from this, as we note that this dietary change only affected men. Our results suggest that the benefits brought to the San Pedro oases during the Middle Horizon were not equally distributed among local groups and that social status, relationship to the Tiwanaku polity, and interment in particular cemeteries affected dietary composition. Am J Phys Anthropol, 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtain the Paris law of fatigue crack propagation in a fuse network model where the accumulated damage in each resistor increases with time as a power law of the local current amplitude. When a resistor reaches its fatigue threshold, it burns irreversibly. Over time, this drives cracks to grow until the system is fractured into two parts. We study the relation between the macroscopic exponent of the crack-growth rate -entering the phenomenological Paris law-and the microscopic damage accumulation exponent, gamma, under the influence of disorder. The way the jumps of the growing crack, Delta a, and the waiting time between successive breaks, Delta t, depend on the type of material, via gamma, are also investigated. We find that the averages of these quantities, <Delta a > and <Delta t >/< t(r)>, scale as power laws of the crack length a, <Delta a > proportional to a(alpha) and <Delta t >/< t(r)> proportional to a(-beta), where < t(r)> is the average rupture time. Strikingly, our results show, for small values of gamma, a decrease in the exponent of the Paris law in comparison with the homogeneous case, leading to an increase in the lifetime of breaking materials. For the particular case of gamma = 0, when fatigue is exclusively ruled by disorder, an analytical treatment confirms the results obtained by simulation. Copyright (C) EPLA, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The automatic disambiguation of word senses (i.e., the identification of which of the meanings is used in a given context for a word that has multiple meanings) is essential for such applications as machine translation and information retrieval, and represents a key step for developing the so-called Semantic Web. Humans disambiguate words in a straightforward fashion, but this does not apply to computers. In this paper we address the problem of Word Sense Disambiguation (WSD) by treating texts as complex networks, and show that word senses can be distinguished upon characterizing the local structure around ambiguous words. Our goal was not to obtain the best possible disambiguation system, but we nevertheless found that in half of the cases our approach outperforms traditional shallow methods. We show that the hierarchical connectivity and clustering of words are usually the most relevant features for WSD. The results reported here shed light on the relationship between semantic and structural parameters of complex networks. They also indicate that when combined with traditional techniques the complex network approach may be useful to enhance the discrimination of senses in large texts. Copyright (C) EPLA, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.