5 resultados para lath martensite

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two steel sheets, one with 5% Ni and another with 10% Ni, were submitted to carburization and quenching, obtaining a microstructure with martensite and retained austenite. These steels were characterized with magnetic Barkhausen noise (MBN). The Barkhausen signal is distinctively different for the carburized and quenched samples. The carburized and quenched samples present higher coercive field than the annealed samples. X-ray diffraction data indicated that the carburized and quenched samples have high density of dislocations, a consequence of the martensitic transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels are candidates for applications in fusion power plants where micro structural long-term stability at temperatures of 650 degrees C to 700 degrees C are required. The microstructural stability of 80% cold-rolled reduced-activation ferritic-martensitic 9% Cr ODS-Eurofer steel was investigated within a wide range of temperatures (300 degrees C to 1350 degrees C). Fine oxide dispersion is very effective to prevent recrystallization in the ferritic phase field. The low recrystallized volume fraction (<0.1) found in samples annealed at 800 degrees C is associated with the nuclei found at prior grain boundaries and around coarse M23C6 particles. The combination of retarding effects such as Zener drag and concurrent recovery decrease the local stored energy and impede further growth of the recrystallization nuclei. Above 90 degrees C, martensitic transformation takes place with consequent coarsening. Significant changes in crystallographic texture are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new series of austenitic stainless steels-Nb stabilized, without Mo additions, non-susceptible to delta ferrite formation and devoid of intemetallic phases (sigma and chi), without deformation induced martensite is being developed, aiming at high temperature applications as well as for corrosive environments. The base steel composition is a 15Cr-15Ni with normal additions of Nb of 0.5, 1.0 and 2 wt%. Mechanical properties, oxidation and corrosion resistance already have been invetigated in previous papers. In this paper, the effects of Nb on the SFE, strain hardening and recrystallization resistance are evaluated with the help of Adaptive Neural Networks (ANN).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carlosbarbosaite, ideally (UO2)(2)Nb2O6(OH)(2)center dot 2H(2)O, is a new mineral which occurs as a late cavity filling in albite in the Jaguaracu pegmatite, Jaguaracu municipality, Minas Gerais, Brazil. The name honours Carlos do Prado Barbosa (1917-2003). Carlosbarbosaite forms long flattened lath-like crystals with a very simple orthorhombic morphology. The crystals are elongated along [001] and flattened on (100); they are up to 120 mu m long and 2-5 mu m thick. The colour is cream to pale yellow, the streak yellowish white and the lustre vitreous. The mineral is transparent (as individual crystals) to translucent (massive). It is not fluorescent under either long-wave or short-wave ultraviolet radiation. Carlosbarbosaite is biaxial(+) with alpha = 1.760(5), beta = 1.775(5), gamma = 1.795(5), 2V(meas) = 70(1)degrees, 2V(calc) = 83 degrees. The orientation is X parallel to a, Y parallel to b, Z parallel to c. Pleochroism is weak, in yellowish green shades, which are most intense in the Z direction. Two samples were analysed. For sample I, the composition is: UO3 54.52, CaO 2.07, Ce2O3 0.33, Nd2O3 0.49, Nb2O5 14.11, Ta2O5 15.25, TiO2 2.20, SiO2 2.14, Fe2O3 1.08, Al2O3 0.73, H2O (calc.) 11.49, total 104.41 wt.%; the empirical formula is (square 0.68Ca0.28Nd0.02Ce0.02)(Sigma=1.00)[U-1.44 square O-0.56(2.88)(H2O)(1.12)](Nb0.80Ta0.52Si0.27Ti0.21Al0.11Fe0.10)(Sigma=2.01) O-4.72(OH)(3.20)(H2O)(2.08). For sample 2, the composition is: UO3 41.83, CaO 2.10, Ce2O3 0.31, Nd2O3 1.12, Nb2O5 14.64, Ta2O5 16.34, TiO2 0.95, SiO2 3.55, Fe2O3 0.89, Al2O3 0.71, H2O (calc.) 14.99, total 97.43 wt.%; the empirical formula is (square 0.67Ca0.27Nd0.05Ce0.01)(Sigma=1.00)[U-1.04 square O-0.96(2.08)(H2O)(1.92)] (Nb0.79Ta0.53Si0.42Ti0.08Al0.10Fe0.08)(Sigma=2.00)O-4.00(OH)(3.96)(H2O)(2.04). The ideal endmember formula is (UO2)(2)Nb2O6(OH)(2)center dot 2H(2)O. Calculated densities are 4.713 g cm(-3) (sample 1) and 4.172 g cm(-3) (sample 2). Infrared spectra show that both (OH) and H2O are present. The strongest eight X-ray powder-diffraction lines [listed as d in angstrom(I)(hkl)] are: 8.405(8)(110), 7.081(10)(200), 4.201(9)(220), 3.333(6)(202), 3.053(8)(022), 2.931(7)(420), 2.803(6)(222) and 2.589(5)(040,402). The crystal structure was solved using single-crystal X-ray diffraction (R = 0.037) which gave the following data: orthorhombic, Cmem, a = 14.150(6), b = 10.395(4), c = 7.529(3) angstrom, V = 1107(1) angstrom(3), Z = 4. The crystal structure contains a single U site with an appreciable deficiency in electron scattering, which is populated by U atoms and vacancies. The U site is surrounded by seven 0 atoms in a pentagonal bipyramidal arrangemet. The Nb site is coordinated by four 0 atoms and two OH groups in an octahedral arrangement. The half-occupied tunnel Ca site is coordinated by four 0 atoms and four H2O groups. Octahedrally coordinated Nb polyhedra share edges and comers to form Nb2O6(OH)(2) double chains, and edge-sharing pentagonal bipyramidal U polyhedra form UO5 chains. The Nb2O6(OH)(2) and UO5 chains share edges to form an open U-Nb-phi framework with tunnels along [001] that contain Ca(H2O)(4) clusters. Carlosbarbosaite is closely related to a family of synthetic U-Nb-O framework tunnel structures, it differs in that is has an (OH)-bearing framework and Ca(H2O)(4) tunnel occupant. The structure of carlosbarbosaite resembles that of holfertite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most important property of austenitic stainless steels is corrosion resistance. In these steels, the transition between paramagnetic and ferromagnetic conditions occurs at low temperatures. Therefore, the use of austenitic stainless steels in conditions in which ferromagnetism absence is important can be considered. On the other hand, the formation of strain-induced martensite is detected when austenitic stainless steels are deformed as well as machined. The strain-induced martensite formed especially in the machining process is not uniform through the chip and its formation can also be related to the Md temperature. Therefore, both the temperature distribution and the gradient during the cutting and chip formation are important to identify regions in which martensite formation is propitiated. The main objective here is evaluate the strain-induced martensite formation throughout machining by observing microstructural features and comparing these to thermal results obtained through finite element method analysis. Results show that thermal analysis can give support to the martensite identified in the microstructural analysis.