10 resultados para lakeshore wetlands
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Risks of the introduction of highly pathogenic avian influenza (HPAI) H5N1 through migratory birds to the main wintering site for wild birds in southern Brazil and its consequences were assessed. Likelihoods were estimated by a qualitative scale ranging from negligible to high. Northern migrants that breed in Alaska and regularly migrate to South America (primary Charadriiformes) can have contact with birds from affected areas in Asia. The likelihood of the introduction of HPAI H5N1 through migratory birds was found to be very low as it is a probability conditioned to successful transmission in breeding areas and the probabilities of an infected bird migrating and shedding the virus as far as southern Brazil. The probability of wild species becoming exposed to H5N1-infected birds is high as they nest with northern migrants from Alaska, whereas for backyard poultry it is moderate to high depending on proximity to wetlands and the presence of species that could increase the likelihood of contact with wild birds such as domestic duck. The magnitude of the biological and economic consequences of successful transmission to poultry or wild birds would be low to severe depending on the probability of the occurrence of outbreak scenarios described. As a result, the risk estimate is greater than negligible, and HPAI H5N1 prevention strategy in the region should always be carefully considered by the veterinary services in Brazil.
Resumo:
Oil spills are potential threats to the integrity of highly productive coastal wetlands, such as mangrove forests. In October 1983, a mangrove area of nearly 300 ha located on the southeastern coast of Brazil was impacted by a 3.5 million liter crude oil spill released by a broken pipeline. In order to assess the long-term effects of oil pollution on mangrove vegetation, we carried out a GIS-based multitemporal analysis of aerial photographs of the years 1962, 1994, 2000 and 2003. Photointerpretation, visual classification, class quantification, ground-truth and vegetation structure data were combined to evaluate the oil impact. Before the spill, the mangroves exhibited a homogeneous canopy and well-developed stands. More than ten years after the spill, the mangrove vegetation exhibited three distinct zones reflecting the long-term effects of the oil pollution. The most impacted zone (10.5 ha) presented dead trees, exposed substrate and recovering stands with reduced structural development. We suggest that the distinct impact and recovery zones reflect the spatial variability of oil removal rates in the mangrove forest. This study identifies the multitemporal analysis of aerial photographs as a useful tool for assessing a system's capacity for recovery and monitoring the long-term residual effects of pollutants on vegetation dynamics, thus giving support to mangrove forest management and conservation.
Resumo:
The identification of the factors behind the distribution of plant communities in patched habitats may prove useful towards better understanding how ecosystems function. Plant assemblages are especially important for wetland productivity and provide food and habitat to animals. The present study analyses the distribution of a metacommunity of helophytes and phreatophytes in a wetland complex in oder to identify the effects of habitat configuration on the colonisation process. Ponds with wide vegetated shores and a short distance to a big (> 10 ha) wetland, had higher species richness. The average percentage of surface covered by each species in all the wetlands correlated positively with the number of patches occupied by that species. Moreover, the community presented a nested pattern (species-poor patches were subsets of species-rich patches), and this pattern came about by selective extinction and colonisation processes. We also detected the presence of some idiosyncratic species that did not follow nestedness. Conservation managers should attempt to maximise the vegetated shore width and to reduce the degree of isolation to enhance species richness. Furthermore, a single large and poorly isolated reserve may have the highest level of biodiversity in emergent vegetation species in this wetland complex, however, the particular ecological requirements of idiosyncratic species should also be taken into account when managing this type of community.
Resumo:
Tropical regions, especially the Amazon region, account for large emissions of methane (CH4). Here, we present CH4 observations from two airborne campaigns conducted within the BARCA (Balanco Atmosferico Regional de Carbono na Amazonia) project in the Amazon basin in November 2008 (end of the dry season) and May 2009 (end of the wet season). We performed continuous measurements of CH4 onboard an aircraft for the first time in the Amazon region, covering the whole Amazon basin with over 150 vertical profiles between altitudes of 500 m and 4000 m. The observations support the finding of previous ground-based, airborne, and satellite measurements that the Amazon basin is a large source of atmospheric CH4. Isotope analysis verified that the majority of emissions can be attributed to CH4 emissions from wetlands, while urban CH4 emissions could be also traced back to biogenic origin. A comparison of five TM5 based global CH4 inversions with the observations clearly indicates that the inversions using SCIAMACHY observations represent the BARCA observations best. The calculated CH4 flux estimate obtained from the mismatch between observations and TM5-modeled CH4 fields ranges from 36 to 43 mg m(-2) d(-1) for the Amazon lowland region.
Resumo:
Compartmentalization is a prerequisite to understand large wetlands that receive water from several sources. However, it faces the heterogeneity in space and time, resulting from physical, chemical and biological processes that are specific to wetlands. The Pantanal is a vast seasonally flooded continental wetland located in the centre of South America. The chemical composition of the waters that supply the Pantanal (70 rivers) has been studied in order to establish a compartmentalization of the wetland based on soil-water interactions. A PCA-based EMMA (End-Members Mixing Analysis) procedure shows that the chemistry of the rivers can be viewed as a mixture of 3 end-members, influenced by lithology and land use, and delimiting large regions. Although the chemical composition of the end-members changed between dry and wet seasons, their spatial distribution was maintained. The results were extended to the floodplain by simple tributary mixing calculation according to the hydrographical network and to the areas of influence for each river when in overflow conditions. The resulting map highlights areas of high geochemical contrast on either side of the river Cuiaba in the north, and of the rivers Aquidauana and Abobral in the south. The PCA-based treatment on a sampling conducted in the Nhecolandia, a large sub region of the Pantanal, allowed the identification and ordering of the processes that control the geochemical variability of the surface waters. Despite an enormous variability in electrical conductivity and pH, all data collected were in agreement with an evaporation process of the Taquari River water, which supplies the region. Evaporation and associated saline precipitations (Mg-calcite, Mg-silicates K-silicates) explained more than 77% of the total variability in the chemistry of the regional surface water sampling.
Resumo:
In this work it was hypothesized that secondary succession on sites that have been managed by single planting of mangrove species is compromised by residual stressors, which could reduce the ecosystem's structural development and lower its functions. Forest structure and environmental characteristics of three planted mangrove stands are compared with reference sites. Structural attributes showed significant differences in the comparison of planted and reference stands. Avicennia schaueriana was the dominant species within both natural regeneration and old-growth stands in terms of basal area (99.2 and 99.4 %, 69.6 and 84.5 %, and 59.0 and 87.1 % for Itacorubi, Saco Grande, and Ratones, respectively). Restoration stands were dominated by Laguncularia racemosa (80.6 and 94.2 % for Saco Grande and Ratones, respectively), except at one site (Itacorubi), where A. schaueriana prevailed (99.7 %). Even though restoration and regeneration stands at Itacorubi showed similar species composition and dominance, cohort sorting revealed an inferior regeneration potential in the restoration stand. Multiple correlation analysis indicated that variables related to elevation disruptions (p (w) = 0.521) were the environmental drivers responsible for the differences observed in forest structure. At restoration sites an impaired pattern of secondary succession was observed, indicating that single species plantings may be ineffective if characteristics of the site, as well as of the area surrounding it, are not considered. The inadequate management of restoration sites can therefore have implications for both immediate and long-term large-scale ecosystem services.
Resumo:
Paleoenvironmental interpretation of proxy data derived from peatlands is largely based upon an evolutionary model for ombrotrophic bogs, in which peat accumulates in still environments. Reports on proxies obtained from minerotrophic fens, where hydrologic inputs are variable, are less common. In this study, a highland peatland in southern Brazil is presented through ground penetrating radar (GPR) and sedimentological, palynological and geochronologic data. The radar stratigraphic interpretation suggests a relatively complex history of erosion and deposition at the site since the beginning of Marine Isotope Stage 3 (MIS 3) interstadial period. In spite of this, radar stratigraphic and palynologic interpretations converge. Electromagnetic reflections tend to group in clusters that show lateral coherence and correlate with different sediment types, while pollen grains abound and are well preserved. As a result, the study of minerotrophic fens provides a source of proxies. suggesting that ombrotrophic bogs are not the only reliable source of data in wetlands for palynological analysis. (C) 2012 University of Washington. Published by Elsevier Inc. All rights reserved.
Resumo:
Zonas ripárias são áreas de saturação hídrica, permanente ou temporária, cuja principal função é a proteção dos recursos hídricos de uma microbacia. Essa pesquisa comparou a adequação do uso do solo de dois cenários de planejamento agrícola de uma microbacia: o cenário convencional, representando o método usualmente empregado, que apenas considera as classes de capacidade de uso da terra, e o cenário hidrológico, que inclui a delimitação e avaliação das zonas ripárias. Um estudo de caso foi realizado na Microbacia do Ribeirão São João (3.656 ha), no município de Mineiros do Tietê (São Paulo, Brasil). Mapas de Classe de Capacidade de Uso da Terra e de Adequação do Uso do Solo foram elaborados, utilizando o Sistema de Informação Geográfica (SIG), para a construção dos cenários convencional e do proposto. Excluindo a Área de Preservação Permanente (APP), o cenário convencional indicou que 59,0% da área destinada à agricultura está adequadamente utilizada, 28,2% está subutilizada e 2,6% está sobreutilizada. O cenário proposto ou hidrológico, com inclusão da identificação da zona ripária (24,9% da microbacia) mostrou que muitas áreas que, no cenário convencional, possuem pouca restrição para o cultivo intensivo, como as classes II e III, são zonas ripárias, de sensibilidade hidrológica. Existem dentro dos limites da zona ripária 38,9% de classe de capacidade de uso III e 49,5% de classe IV. O planejador, desconsiderando a zona ripária, pode colocar em risco áreas vitais que, se degradadas, representam danos para a saúde e resiliência da microbacia.
Resumo:
Oil spills are potential threats to the integrity of highly productive coastal wetlands, such as mangrove forests. In October 1983, a mangrove area of nearly 300 ha located on the southeastern coast of Brazil was impacted by a 3.5 million liter crude oil spill released by a broken pipeline. In order to assess the long-term effects of oil pollution on mangrove vegetation, we carried out a GIS-based multitemporal analysis of aerial photographs of the years 1962, 1994, 2000 and 2003. Photointerpretation, visual classification, class quantification, ground-truth and vegetation structure data were combined to evaluate the oil impact. Before the spill, the mangroves exhibited a homogeneous canopy and well-developed stands. More than ten years after the spill, the mangrove vegetation exhibited three distinct zones reflecting the long-term effects of the oil pollution. The most impacted zone (10.5 ha) presented dead trees, exposed substrate and recovering stands with reduced structural development. We suggest that the distinct impact and recovery zones reflect the spatial variability of oil removal rates in the mangrove forest. This study identifies the multitemporal analysis of aerial photographs as a useful tool for assessing a system's capacity for recovery and monitoring the long-term residual effects of pollutants on vegetation dynamics, thus giving support to mangrove forest management and conservation.
Resumo:
AIM: The main goal of this research was to investigate the influence of the hydrological pulses on the space-temporal dynamics of physical and chemical variables in a wetland adjacent to Jacupiranguinha River (São Paulo, Brazil); METHODS: Eleven sampling points were distributed among the wetland, a tributary by its left side and the adjacent river. Four samplings were carried out, covering the rainy and the dry periods. Measures of pH, dissolved oxygen, electrical conductivity and redox potential were taken in regular intervals of the water column using a multiparametric probe. Water samples were collected for the nitrogen and total phosphorus analysis, as well as their dissolved fractions (dissolved inorganic phosphorus, total dissolved phosphorus, ammoniacal nitrogen and nitrate). Total alkalinity and suspended solids were also quantified; RESULTS: The Multivariate Analysis of Variance showed the influence of the seasonality on the variability of the investigated variables, while the Principal Component Analysis gave rise in two statistical significant axes, which delimited two groups representative of the rainy and dry periods. Hydrological pulses from Jacupiranguinha River, besides contributing to the inputs of nutrients and sediments during the period of connectivity, accounted for the decrease in spatial gradients in the wetland. This "homogenization effect" was evidenced by the Cluster Analysis. The research also showed an industrial raw effluent as the main point source of phosphorus to the Jacupiranguinha River and, indirectly, to the wetland; CONCLUSIONS: Therefore, considering the scarcity of information about the wetlands in the study area, this research, besides contributing to the understanding of the influence of hydrological pulses on the investigated environmental variables, showed the need for adoption of conservation policies of these ecosystems face the increase anthropic pressures that they have been submitted, which may result in lack of their ecological, social and economic functions.