10 resultados para kinetic-energy
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Fundamental principles of mechanics were primarily conceived for constant mass systems. Since the pioneering works of Meshcherskii (see historical review in Mikhailov (Mech. Solids 10(5):32-40, 1975), efforts have been made in order to elaborate an adequate mathematical formalism for variable mass systems. This is a current research field in theoretical mechanics. In this paper, attention is focused on the derivation of the so-called 'generalized canonical equations of Hamilton' for a variable mass particle. The applied technique consists in the consideration of the mass variation process as a dissipative phenomenon. Kozlov's (Stek. Inst. Math 223:178-184, 1998) method, originally devoted to the derivation of the generalized canonical equations of Hamilton for dissipative systems, is accordingly extended to the scenario of variable mass systems. This is done by conveniently writing the flux of kinetic energy from or into the variable mass particle as a 'Rayleigh-like dissipation function'. Cayley (Proc. R Soc. Lond. 8:506-511, 1857) was the first scholar to propose such an analogy. A deeper discussion on this particular subject will be left for a future paper.
Resumo:
Measurements of the anisotropy parameter v(2) of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p(T), and transverse kinetic energy KET at midrapidity (vertical bar eta vertical bar < 0.35) in Au + Au collisions at root s(N N) = 200 GeV are presented. Pions and protons are identified up to p(T) = 6 GeV/c, and kaons up to p(T) = 4 GeV/c, by combining information from time-of-flight and aerogel Cerenkov detectors in the PHENIX Experiment. The scaling of v(2) with the number of valence quarks (n(q)) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KET/n(q) in noncentral Au + Au collisions (20-60%), but this scaling remains valid in central collisions (0-10%).
Resumo:
Analysis of the NCAR/NCEP Reanalysis show changes in the atmospheric circulation in the Southern hemisphere, with a strengthening and poleward displacement of the westerlies. Because the wind is one of the main sources of the ocean's kinetic energy, a numerical experiment with the Hybrid Coordinate Ocean Model (HYCOM) was forced with monthly means of the NCAR/NCEP Reanalysis products to investigate the effects of the changes in the wind on the ocean circulation in a geographical domain defined by 98W – 114E; 65S – 60N. The results show good agreement with other models and with available satellite data. In the western sector of the South Atlantic there are several indications of changes such as a poleward displacement of the Brazil-Malvinas Confluence and positive trends in temperature and salinity of the southwestern region of the subtropical gyre
Resumo:
Analysis of the NCAR/NCEP Reanalysis show changes in the atmospheric circulation in the Southern hemisphere, with a strengthening and poleward displacement of the westerlies. Because the wind is one of the main sources of the ocean's kinetic energy, a numerical experiment with the Hybrid Coordinate Ocean Model (HYCOM) was forced with monthly means of the NCAR/NCEP Reanalysis products to investigate the effects of the changes in the wind on the ocean circulation in a geographical domain defined by 98W – 114E; 65S – 60N. The results show good agreement with other models and with available satellite data. In the western sector of the South Atlantic there are several indications of changes such as a poleward displacement of the Brazil-Malvinas Confluence and positive trends in temperature and salinity of the southwestern region of the subtropical gyre.
Resumo:
The human parasite Schistosoma mansoni is totally dependent on the purine salvage pathway in order to supply large quantities of purine precursors for its energy and DNA biosynthetic needs. Adenylate kinase (ADK) is responsible for the conversion of AMP (produced by the adenosine kinase reaction) into ADP, which is subsequently converted into ATP by nucleoside diphosphate kinase (NDPK). ADK and NDPK are the most active enzymes of the pathway, probably reflecting an evolutionary adaptation due to the intense use of the branch in which they participate. However, notwithstanding their importance very little information has been accumulated found regarding these enzymes. In this work two adenylate kinases from S. mansoni were cloned and heterologously expressed in Escherichia coil. The purified products were utilized in activity assays, and displayed kinetic parameters similar to the corresponding human orthologous proteins. The cytosolic S. mansoni ADK was crystallized and its structure solved allowing us to detect a difference in the nucleotide binding site when compared with the human ortholog. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the results of a study on carbothermal reduction of iron ore made under the microwave field in equipment specially developed for this purpose. The equipment allows the control of radiated and reflected microwave power, and therefore measures the microwave energy actually applied to the load in the reduction process. It also allows performing energy balances and determining the reaction rate with high levels of confidence by simultaneously measuring temperature and mass of the material upon reduction with high reproducibility. We used a microwave generator of 2.45?GHz with variable power up to 3000?W. Self-reducing pellets under argon atmosphere, containing iron ore and petroleum coke, with 3.5?g of mass and 15?mm of diameter were declined. We obtained the kinetic curves of reduction of iron ore and of energy consumption to the process in the maximum electric field, in the maximum magnetic field and at different values of power/mass. The data allow analyzing how the microwave energy was actually consumed in the reduction of ore.
Resumo:
The kinetics of sugar cane bagasse cellulose saccharification and the decomposition of glucose under extremely low acid (ELA) conditions, (0.07%), 0.14%, and 0.28% H2SO4, and at high temperatures were investigated using batch reactors. The first-order rate constants were obtained by weight loss, remaining glucose, and fitting glucose concentration profiles determined with HPLC using the Saeman model. The maximum glucose yields reached 67.6% (200 degrees C, 0.07% H2SO4, 30 min), 69.8% (210 degrees C, 0.14% H2SO4, 10 min), and 67.3% (210 degrees C, 0.28% H2SO4, 6 min). ELA conditions produced remarkable glucose yields when applied to bagasse cellulose. The first-order rate constants were used to calculate activation energies and extrathermodynamic parameters to elucidate the reaction mechanism under ELA conditions. The effect of acid concentration on cellulose hydrolysis and glucose decomposition was also investigated. The observed activation energies and reaction orders with respect to hydronium ion for cellulose hydrolysis and glucose decomposition were 184.9 and 124.5 kJ/mol and 1.27 and 0.75, respectively.
Resumo:
Fumarate hydratases (FHs; EC 4.2.1.2) are enzymes that catalyze the reversible hydration of fumarate to S-malate. Parasitic protists that belong to the genus Leishmania and are responsible for a complex of vector-borne diseases named leishmaniases possess two genes that encode distinct putative FH enzymes. Genome sequence analysis of Leishmania major Friedlin reveals the existence of genes LmjF24.0320 and LmjF29.1960 encoding the putative enzymes LmFH-1 and LmFH-2, respectively. In the present work, the FH activity of both L. major enzymes has been confirmed. Circular dichroism studies suggest important differences in terms of secondary structure content when comparing LmFH isoforms and even larger differences when comparing them to the homologous human enzyme. CD melting experiments revealed that both LmFH isoforms are thermolabile enzymes. The catalytic efficiency under aerobic and anaerobic environments suggests that they are both highly sensitive to oxidation and damaged by oxygen. Intracellular localization studies located LmFH-1 in the mitochondrion, whereas LmFH-2 was found predominantly in the cytosol with possibly also some in glycosomes. The high degree of sequence conservation in different Leishmania species, together with the relevance of FH activity for the energy metabolism in these parasites suggest that FHs might be exploited as targets for broad-spectrum antileishmanial drugs. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
This study evaluates the potential for using different effluents for simultaneous H-2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H-2 was produced from parboiled rice wastewater (23.9 mL g(-1) chemical oxygen demand [COD]) and vinasse (20.8 mL g(-1) COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3 mL g(-1) COD), followed by parboiled rice wastewater (115.5 mL g(-1) COD) and glycerol (180.1 mL g(-1) COD). The maximum amount of CH4 was observed for vinasse (255.4 mL g(-1) COD). The total energy recovery from vinasse (10.4 kJ g(-1) COD) corresponded to the maximum COD reduction (74.7 %), followed by glycerol (70.38 %, 7.20 kJ g(-1) COD), parboiled rice wastewater (63.91 %, 4.92 kJ g(-1) COD), and sewage (51.11 %, 1.85 kJ g(-1) COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H-2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H-2 and CH4.
Resumo:
Nitrogen removal coupled with sulfide oxidation has potential for the treatment of effluents from anaerobic reactors because they contain sulfide, which can be used as an endogenous electron donor for denitrification. This work evaluated the intrinsic kinetics of sulfide-oxidizing autotrophic denitrification via nitrate and nitrite in systems containing attached cells. Differential reactors were fed with nitrified synthetic domestic sewage and different sulfide concentrations. The intrinsic kinetic parameters of nitrogen removal were determined when the mass transfer resistance was negligible. This bioprocess could be described by a half-order kinetic model for biofilms. The half-order kinetic coefficients ranged from 0.425 to 0.658 mg N-1/2 L-1/2 h(-1) for denitrification via nitrite and from 0.190 to 0.609 mg N-1/2 L-1/2 h(-1) for denitrification via nitrate. In this latter, the lower value was due to the use of electrons donated from intermediary sulfur compounds whose formation and subsequent consumption were detected. (C) 2011 Elsevier Ltd. All rights reserved.