3 resultados para isotiocianato de fluoresceína (FITC)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In many types of cancer, prostaglandin E-2 (PGE(2)) is associated with tumour related processes including proliferation, migration, angiogenesis and apoptosis. However in gliomas the role of this prostanoid is poorly understood. Here, we report on the proliferative, migratory, and apoptotic effects of PGE(1), PGE(2) and Ibuprofen (IBP) observed in the T98G human glioma cell line in vitro. Methods: T98G human glioma cells were treated with IBP, PGE(1) or PGE(2) at varying concentrations for 24-72 hours. Cell proliferation, mitotic index and apoptotic index were determined for each treatment. Caspase-9 and caspase-3 activity was measured using fluorescent probes in live cells (FITC-LEHD-FMK and FITC-DEVD-FMK respectively). The migratory capacity of the cells was quantified using a scratch migration assay and a transwell migration assay. Results: A significant decrease was seen in cell number (54%) in the presence of 50 mu M IBP. Mitotic index and bromodeoxyuridine (BrdU) incorporation were also decreased 57% and 65%, respectively, by IBP. The apoptotic index was increased (167%) and the in situ activity of caspase-9 and caspase-3 was evident in IBP treated cells. The inhibition of COX activity by IBP also caused a significant inhibition of cell migration in the monolayer scratch assay (74%) and the transwell migration assay (36%). In contrast, the presence of exogenous PGE(1) or PGE(2) caused significant increases in cell number (37% PGE(1) and 45% PGE(2)). When mitotic index was measured no change was found for either PG treatment. However, the BrdU incorporation rate was significantly increased by PGE(1) (62%) and to a greater extent by PGE(2) (100%). The apoptotic index was unchanged by exogenous PGs. The addition of exogenous PGs caused an increase in cell migration in the monolayer scratch assay (43% PGE(1) and 44% PGE(2)) and the transwell migration assay (28% PGE(1) and 68% PGE(2)). Conclusions: The present study demonstrated that treatments which alter PGE(1) and PGE(2) metabolism influence the proliferative and apoptotic indices of T98G glioma cells. The migratory capacity of the cells was also significantly affected by the change in prostaglandin metabolism. Modifying PG metabolism remains an interesting target for future studies in gliomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of tumor-initiating cells (CD44(+)/CD24(-)) in solid tumors has been reported as a possible cause of cancer metastasis and treatment failure. Nevertheless, little is know about the presence of CD44(+)/CD24(-) cells within the primary tumor and metastasis. The proportion of CD44(+)/CD24(-) cells was analyzed in 40 samples and in 10 lymph node metastases using flow cytometry phenotyping. Anti-human CD326 (EpCam; FITC), antihuman CD227 (MUC-1; FITC), anti-human CD44 (APC), and anti-human CD24 (PE), anti-ABCG2 (PE), and anti-CXCR4 (PeCy7) were used for phenotype analysis. The mean patient age was 60.5 years (range, 33-87 years); mean primary tumor size (pT) was 1.8 cm (0.5-3.5 cm). The Wilcoxon or Kruskal-Wallis test was used for univariate analyses. Logistic regression was used for multivariate analysis. The median percentage of CD44(+)/CD24(-) cells within primary invasive ductal carcinomas (IDC) was 2.7% (range, 0.2-71.2). In lymph node metastases, we observed a mean of 6.1% (range, 0.07-53.7). The percentage of CD44(+)/CD24(-) cells in IDCs was not associated with age, pT, tumor grade and HER2. We observed a significantly enrichment of CD44(+)/CD24(-) and ABCG2(+) cells in ESA(+) cell population in patients with positive lymph nodes (P = 0.02 and P = 0.04, respectively). Our data suggest that metastatic dissemination is associated with an increase in tumorinitiating cells in stage I and II breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.