12 resultados para ion-neutral reactions, astrochemistry, interstellar medium
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 degrees of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b = 47 degrees +/- 20 degrees, 25 degrees +/- 20 degrees. This direction is close to the direction of the ISMF that shapes the heliosphere, l, b = 33 degrees +/- 4 degrees, 55 degrees +/- 4 degrees, as traced by the center of the "Ribbon" of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l approximate to 0 degrees -> 80 degrees and b approximate to 0 degrees -> 30 degrees, where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of +/- 0 degrees.25 pc(-1). This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of +/- 23 degrees. The ordered component and standard relations between polarization, color excess, and H-o column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at +/- 975 angstrom does not appear to play a role in grain alignment for the low-density ISM studied here.
Resumo:
One of the key objectives in fuel cell technology is to reduce Pt loading by the improvement of its catalytic activity towards alcohol oxidation. Here, a sol-gel based method was used to prepare ternary and quaternary carbon supported nanoparticles by combining Pt-Ru with Mo, Ta, Pb, Rh or Ir, which were used as electro-catalysts for the methanol and ethanol oxidation reactions in acid medium. Structural characterization performed by XRD measurements revealed that crystalline structures with crystallites ranging from 2.8 to 4.1 nm in size and with different alloy degrees were produced. Tantalum and lead deposited as a heterogeneous mixture of oxides with different valences resulting in materials with complex structures. The catalysts activities were evaluated by cyclic voltammetry and by Tafel plots and the results showed that the activity towards methanol oxidation was highly dependent of the alloy degree, while for ethanol the presence of a metal capable to promote the break of C-C bond, such as Rh, was necessary for a good performance. Additionally, the catalysts containing of TaOx or PbOx resulted in the best materials due to different effects: the hi-functional mechanism promoted by TaOx and a better dispersion of the catalysts constituents promoted by PbOx. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Gas-phase reactions of model carbosulfonium ions (CH3-S+?=?CH2; CH3CH2-S+?=?CH2 and Ph-S+?=?CH2) and an O-analogue carboxonium ion (CH3-O+?=?CH2) with acyclic (isoprene, 1,3-butadiene, methyl vinyl ketone) and cyclic (1,3-cyclohexadiene, thiophene, furan) conjugated dienes were systematically investigated by pentaquadrupole mass spectrometry. As corroborated by B3LYP/6-311?G(d,p) calculations, the carbosulfonium ions first react at large extents with the dienes forming adducts via simple addition. The nascent adducts, depending on their stability and internal energy, react further via two competitive channels: (1) in reactions with acyclic dienes via cyclization that yields formally [4?+?2+] cycloadducts, or (2) in reactions with the cyclic dienes via dissociation by HSR loss that yields methylenation (net CH+ transfer) products. In great contrast to its S-analogues, CH3-O+?=?CH2 (as well as C2H5-O+?=?CH2 and Ph-O+?=?CH2 in reactions with isoprene) forms little or no adduct and proton transfer is the dominant reaction channel. Isomerization to more acidic protonated aldehydes in the course of reaction seems to be the most plausible cause of the contrasting reactivity of carboxonium ions. The CH2?=?CH-O+?=?CH2 ion forms an abundant [4?+?2+] cycloadduct with isoprene, but similar to the behavior of such alpha,beta-unsaturated carboxonium ions in solution, seems to occur across the C?=?C bond. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2.4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe2+ ([Fe2+](0)) from 1.0 up to 2.5 mM, the rate in mmol of H2O2 fed into the system (F-H2O2,F-in) from 3.67 up to 7.33 mmol of H2O2/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work describes the synthesis of five O-silyloxy-1,3-thiazoles and their use as fast-response turn-on probes for fluoride ion detection in polar aprotic solvents and in aqueous cetyltrimethylammonium bromide micellar medium. The fluoride-triggered deprotection of these silyl ethers results in ca. 180-nm shifts in the fluorescence emission wavelengths. All compounds are suitable for the detection of fluoride ions with a detection limit in DMSO of 107 mol?L1; derivatives containing a 2-pyridyl moiety in the thiazole system are more efficient than those with a 3- or 4-pyridyl moiety. Typical anionic interferents, such as acetate or chloride, are not detected by O-silyloxy-1,3-thiazoles, making these compounds very specific for fluoride.
Resumo:
In the presence of turbulence, magnetic field lines lose their dynamical identity and particles entrained on field lines diffuse through space at a rate determined by the amplitude of the turbulence. In previous work (Lazarian and Vishniac, 1999; Kowal et al., 2009; Eyink et al., 2011) we showed that this leads to reconnection speeds which are independent of resistivity. In particular, in Kowal et al. (2009) we showed that numerical simulations were consistent with the predictions of this model. Here we examine the structure of the current sheet in simulations of turbulent reconnection. Laminar flows consistent with the Sweet-Parker reconnection model produce very thin and well ordered currents sheets. On the other hand, the simulations of Kowal et al. (2009) show a strongly disordered state even for relatively low levels of turbulence. Comparing data cubes with and without reconnection, we find that large scale field reversals are the cumulative effect of many individual eddies, each of which has magnetic properties which are not very different from turbulent eddies in a homogeneous background. This implies that the properties of stationary and homogeneous MHD turbulence are a reasonable guide to understanding turbulence during large scale magnetic reconnection events. In addition, dissipation and high energy particle acceleration during reconnection events take place over a macroscopic volume, rather than being confined to a narrow zone whose properties depend on microscopic transport coefficients.
Resumo:
A thin-layer electrochemical flow cell coupled to capillary electrophoresis with contactless conductivity detection (EC-CE-(CD)-D-4) was applied for the first time to the derivatization and quantification of neutral species using aliphatic alcohols as model compounds. The simultaneous electrooxidation of four alcohols (ethanol, 1-propanol, 1-butanol, and 1-pentanol) to the corresponding carboxylates was carried out on a platinum working electrode in acid medium. The derivatization step required 1 min at 1.6 V vs. Ag/AgCl under stopped flow conditions, which was preceded by a 10 s activation at 0 V. The solution close to the electrode surface was then hydrodynamically injected into the capillary, and a 2.5 min electrophoretic separation was carried out. The fully automated flow system operated at a frequency of 12 analyses per hour. Simultaneous determination of the four alcohols presented detection limits of about 5 x 10(-5) mol As a practical application with a complex matrix, ethanol concentrations were determined in diluted pale lager beer and in nonalcoholic beer. No statistically significant difference was observed between the EC-CE-(CD)-D-4 and gas chromatography with flame ionization detection (GC-FID) results for these samples. The derivatization efficiency remained constant over several hours of continuous operation with lager beer samples (n = 40).
Resumo:
The chemiluminescent reactions of bis(2,4,6-trichlorophenyl)oxalate (TCPO) and bis(2-nitrophenyl)oxalate (2-NPO) with hydrogen peroxide in acetonitrile/water micellar systems (anionic, cationic, and non-ionic) and gamma-cyclodextrin were studied in the presence of fluoranthene or 9,10-diphenylanthracene, imidazole, and two buffer solutions, HTRIS+/TRIS and H2PO4-/HPO42-. The relative chemiluminenscence (CL) intensity is higher in the presence of the cationic (DDAB, CTAC, DODAC, and OTAC), anionic (SDS), and non-ionic (Tween 80) surfactants. In the presence of some non-ionic surfactants (Brij 35, Brij 76, and Tween 20), the CL intensity was partially quenched compared with the reaction with no surfactant. The sensitivity for hydrogen peroxide determination in the range 0.01 x 10(-4) to 1.0 x 10(-4) mol L-1, considering the slope of the calibration curves (maximum peak height of CL vs. concentration), improved with the introduction of DDAH, CTAB, and SDS in HTRIS+/TRIS buffer.
Resumo:
Air Force Office of Scientific Research (AFOSR)
Resumo:
Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data show that several genes involved in cell organisation and ion metabolism/transport are expressed differentially along dimorphic transition. Hyper expression in yeast of the enzymes of sulphur metabolism reinforced that this metabolic pathway could be important for this process. Understanding these changes by functional analysis of such genes may lead to a better understanding of the infective process, thus providing new targets and strategies to control PCM.
Resumo:
In this work, carbon supported nickel based nanoparticles were prepared by impregnation method and used as anode electrocatalysts for the glycerol conversion. These metallic powders were mixed with a suitable amount of a Nafion/water solution to make catalytic inks which were then deposited onto the surface of carbon Toray used as a conductive substrate. Long-term electrolyses of glycerol were carried out in alkaline medium by chronoamperometry experiments. Analysis of the oxidation products was performed with ion-exclusion liquid chromatography which separates the analytes by ascending pKa. The spectroscopic measurements have shown that the cobalt content in the anode composition did contribute to the CAC bond cleavage of the initial molecule of glycerol.
Resumo:
Antibiotics are used extensively in the treatment of various infections. Consequently, they can be considered among the most important agents involved in adverse reactions to drugs, including both allergic and non-allergic drug hypersensitivity [J Allergy Clin Immunol 113:832–836, 2004]. Most studies published to date deal mainly with reactions to the beta-lactam group, and information on hypersensitivity to each of the other antimicrobial agents is scarce. The present document has been produced by the Special Committee on Drug Allergy of the World Allergy Organization to present the most relevant information on the incidence, clinical manifestations, diagnosis, possible mechanisms, and management of hypersensitivity reactions to non beta-lactam antimicrobials for use by practitioners worldwide.