6 resultados para inverse Emulsion
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A scheme is presented in which an organic solvent environment in combination with surfactants is used to confine a natively unfolded protein inside an inverse microemulsion droplet. This type of confinement allows a study that provides unique insight into the dynamic structure of an unfolded, flexible protein which is still solvated and thus under near-physiological conditions. In a model system, the protein osteopontin (OPN) is used. It is a highly phosphorylated glycoprotein that is expressed in a wide range of cells and tissues for which limited structural analysis exists due to the high degree of flexibility and large number of post-translational modifications. OPN is implicated in tissue functions, such as inflammation and mineralisation. It also has a key function in tumour metastasis and progression. Circular dichroism measurements show that confinement enhances the secondary structural features of the protein. Small-angle X-ray scattering and dynamic light scattering show that OPN changes from being a flexible protein in aqueous solution to adopting a less flexible and more compact structure inside the microemulsion droplets. This novel approach for confining proteins while they are still hydrated may aid in studying the structure of a wide range of natively unfolded proteins.
Resumo:
The present work propounds an inverse method to estimate the heat sources in the transient two-dimensional heat conduction problem in a rectangular domain with convective bounders. The non homogeneous partial differential equation (PDE) is solved using the Integral Transform Method. The test function for the heat generation term is obtained by the chip geometry and thermomechanical cutting. Then the heat generation term is estimated by the conjugated gradient method (CGM) with adjoint problem for parameter estimation. The experimental trials were organized to perform six different conditions to provide heat sources of different intensities. This method was compared with others in the literature and advantages are discussed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The continental margin of southeast Brazil is elevated. Onshore Tertiary basins and Late Cretaceous/Paleogene intrusions are good evidence for post breakup tectono-magmatic activity. To constrain the impact of post-rift reactivation on the geological history of the area, we carried out a new thermochronological study. Apatite fission track ages range from 60.7 +/- 1.9 Ma to 129.3 +/- 4.3 Ma, mean track lengths from 11.41 +/- 0.23 mu m to 14.31 +/- 0.24 mu m and a subset of the (U-Th)/He ages range from 45.1 +/- 1.5 to 122.4 +/- 2.5 Ma. Results of inverse thermal history modeling generally support the conclusions from an earlier study for a Late Cretaceous phase of cooling. Around the onshore Taubate Basin, for a limited number of samples, the first detectable period of cooling occurred during the Early Tertiary. The inferred thermal histories for many samples also imply subsequent reheating followed by Neogene cooling. Given the uncertainty of the inversion results, we did deterministic forward modeling to assess the range of possibilities of this Tertiary part of the thermal history. The evidence for reheating seems to be robust around the Taubate Basin, but elsewhere the data cannot discriminate between this and a less complex thermal history. However, forward modeling results and geological information support the conclusion that the whole area underwent cooling during the Neogene. The synchronicity of the cooling phases with Andean tectonics and those in NE Brazil leads us to assume a plate-wide compressional stress that reactivated inherited structures. The present-day topographic relief of the margin reflects a contribution from post-breakup reactivation and uplift.
Resumo:
Most atypical antipsychotic drugs (APDs), e. g. risperidone (RIS), produce more extensive blockade of brain serotonin (5-HT)(2A) than dopamine (DA) D-2 receptors. This distinguishes them from typical APDs, e.g. haloperidol (HAL). Our objective was to test the hypothesis that augmentation of low doses of RIS or HAL (2 mg/day) with pimavanserin (PIM), a selective 5-HT2A inverse agonist, to enhance 5-HT2A receptor blockade, can achieve efficacy comparable to RIS, 6 mg/day, but with lesser side effects. In a multi-center, randomized, double-blind, 6 week trial, 423 patients with chronic schizophrenia experiencing a recent exacerbation of psychotic symptoms were randomized to RIS2mg + placebo (RIS2PBO), RIS2mg + PIM20mg (RIS2PIM), RIS6mg + PBO (RIS6PBO), HAL2mg + PBO (HAL2PBO), or HAL2mg + PIM20mg (HAL2PIM). Improvement in psychopathology was measured by the PANSS and CGI-S. The reduction in PANSS Total Score with RIS2PIM at endpoint was significantly greater than RIS2PBO: -23.0 vs. -16.3 (p = 0.007), and not significantly different from the RIS6PBO group: -23.2 points. The percentage of patients with >= 20% improvement at day 15 in the RIS2PIM group was 62.3%, significantly greater than the RIS6PBO (42.1%; p = 0.01) and the RIS2PBO groups (37.7%; p = 0.002). Weight gain and hyperprolactinemia were greater in the RIS6PBO group than the RIS2PIM group but there was no difference in extrapyramidal side effects (EPS). HAL2PBO and HAL2PIM were not significantly different from each other in efficacy but HAL2PIM had less EPS at end point. Both HAL groups and RIS6PBO showed equal improvement in psychopathology at endpoint, indicating HAL 2 mg/day is effective to treat an acute exacerbation in chronic schizophrenia patients. In conclusion, a sub-effective RIS dose combined with PIM to enhance 5-HT2A receptor blockade provided faster onset of action, and at endpoint, equal efficacy and better safety, compared to standard dose RIS. These results support the conclusion that 5-HT2A receptor blockade is a key component of the action of some atypical APDs and can reduce EPS due to a typical APD. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background Plasma lipases and lipid transfer proteins are involved in the generation and speciation of high density lipoproteins. In this study we have examined the influence of plasma lipases and lipid transfer protein activities on the transfer of free cholesterol (FC) and phospholipids (PL) from lipid emulsion to human, rat and mouse lipoproteins. The effect of the lipases was verified by incubation of labeled (3H-FC,14C-PL) triglyceride rich emulsion with human plasma (control, post-heparin and post-heparin plus lipase inhibitor), rat plasma (control and post-heparin) and by the injection of the labeled lipid emulsion into control and heparinized functionally hepatectomized rats. Results In vitro, the lipase enriched plasma stimulated significantly the transfer of 14C-PL from emulsion to high density lipoprotein (p<0.001) but did not modify the transfer of 3H-FC. In hepatectomized rats, heparin stimulation of intravascular lipolysis increased the plasma removal of 14C-PL and the amount of 14C-PL found in the low density lipoprotein density fraction but not in the high density lipoprotein density fraction. The in vitro and in vivo experiments showed that free cholesterol and phospholipids were transferred from lipid emulsion to plasma lipoproteins independently from each other. The incubation of human plasma, control and control plus monoclonal antibody anti-cholesteryl ester transfer protein (CETP), with 14C-PL emulsion showed that CETP increases 14C-PL transfer to human HDL, since its partial inhibition by the anti-CETP antibody reduced significantly the 14C-PL transfer (p<0.05). However, comparing the nontransgenic (no CETP activity) with the CETP transgenic mouse plasma, no effect of CETP on the 14C-PL distribution in mice lipoproteins was observed. Conclusions It is concluded that: 1-intravascular lipases stimulate phospholipid transfer protein mediated phospholipid transfer, but not free cholesterol, from triglyceride rich particles to human high density lipoproteins and rat low density lipoproteins and high density lipoproteins; 2-free cholesterol and phospholipids are transferred from triglyceride rich particles to plasma lipoproteins by distinct mechanisms, and 3 - CETP also contributes to phospholipid transfer activity in human plasma but not in transgenic mice plasma, a species which has high levels of the specific phospholipid transfer protein activity.