2 resultados para interactive value formation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present new Gemini spectra of 14 new objects found within the H?i tails of Hickson Compact Groups (HCGs) 92 and 100. Nine of them are Galaxy Evolution Explorer (GALEX) far-ultraviolet (FUV) and near-ultraviolet (NUV) sources. The spectra confirm that these objects are members of the compact groups and have metallicities close to solar, with an average value of 12+log(O/H) similar to 8.5. They have average FUV luminosities 7 x 10(40)?erg?s-1 and very young ages (<100?Myr), and two of them resemble tidal dwarf galaxy (TDG) candidates. We suggest that they were created within gas clouds that were ejected during galaxygalaxy interactions into the intergalactic medium, which would explain the high metallicities of the objects, inherited from the parent galaxies from which the gas originated. We conduct a search for similar objects in six interacting systems with extended H?i tails: NGC 2623, NGC 3079, NGC 3359, NGC 3627, NGC 3718 and NGC 4656. We found 35 ultraviolet (UV) sources with ages < 100?Myr; however, most of them are on average less luminous/massive than the UV sources found around HCG 92 and HCG 100. We speculate that this might be an environmental effect and that compact groups of galaxies are more favourable to TDG formation than other interacting systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the gravitational collapse of a spherically symmetric massive core of a star in which the fluid component is interacting with a growing vacuum energy density. The influence of the variable vacuum in the collapsing core is quantified by a phenomenological beta parameter as predicted by dimensional arguments and the renormalization group approach. For all reasonable values of this free parameter, we find that the vacuum energy density increases the collapsing time, but it cannot prevent the formation of a singular point. However, the nature of the singularity depends on the value of beta. In the radiation case, a trapped surface is formed for beta <= 1/2, whereas for beta >= 1/2, a naked singularity is developed. In general, the critical value is beta = 1-2/3(1 + omega) where omega is the parameter describing the equation of state of the fluid component.