14 resultados para integro-difference model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabasi-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q > 2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).
Resumo:
We address the investigation of the solvation properties of the minimal orientational model for water originally proposed by [Bell and Lavis, J. Phys. A 3, 568 (1970)]. The model presents two liquid phases separated by a critical line. The difference between the two phases is the presence of structure in the liquid of lower density, described through the orientational order of particles. We have considered the effect of a small concentration of inert solute on the solvent thermodynamic phases. Solute stabilizes the structure of solvent by the organization of solvent particles around solute particles at low temperatures. Thus, even at very high densities, the solution presents clusters of structured water particles surrounding solute inert particles, in a region in which pure solvent would be free of structure. Solute intercalates with solvent, a feature which has been suggested by experimental and atomistic simulation data. Examination of solute solubility has yielded a minimum in that property, which may be associated with the minimum found for noble gases. We have obtained a line of minimum solubility (TmS) across the phase diagram, accompanying the line of maximum density. This coincidence is easily explained for noninteracting solute and it is in agreement with earlier results in the literature. We give a simple argument which suggests that interacting solute would dislocate TmS to higher temperatures.
Resumo:
This work presents numerical simulations of two fluid flow problems involving moving free surfaces: the impacting drop and fluid jet buckling. The viscoelastic model used in these simulations is the eXtended Pom-Pom (XPP) model. To validate the code, numerical predictions of the drop impact problem for Newtonian and Oldroyd-B fluids are presented and compared with other methods. In particular, a benchmark on numerical simulations for a XPP drop impacting on a rigid plate is performed for a wide range of the relevant parameters. Finally, to provide an additional application of free surface flows of XPP fluids, the viscous jet buckling problem is simulated and discussed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The link between lower and upper airways has been reported since the beginning of 1800s. They share the same pseudostratified ciliated columnar epithelium lining and the concept of one airway, one disease is quite well widespread. Nasal polyposis and asthma share basically the same inflammatory process: predominant infiltration of eosinophils, mucus cell hyperplasia, edema, thickened basal membrane, polarization for Th2 cell immune response, similar pro-inflammatory mediators are increased, for example cysteinyl leukotrienes. If the lower and upper airways share a lot of common epithelial structural features so why is the edema in the nasal mucosa able to increase so much the size of the mucosa to the point of developing polyps? The article tries to underline some differences between the nasal and the bronchial mucosa that could be implicated in this aberrant change from normal mucosa to polyps. This paper creates the concept that there are no polyps with the features of nasal polyposis disease in the lower airway and through it is developed the hypothesis of the nasal polyps origin could partially lie on the difference between the upper and lower airway histology. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Ischemia/reperfusion (I/R) injury remains a major cause of graft dysfunction, which impacts short- and long-term follow-up. Hyperbaric oxygen therapy (HBO), through plasma oxygen transport, has been currently used as an alternative treatment for ischemic tissues. The aim of this study was to analyze the effects of HBO on kidney I/R injury model in rats, in reducing the harmful effect of I/R. The renal I/R model was obtained by occluding bilateral renal pedicles with nontraumatic vascular clamps for 45 minutes, followed by 48 hours of reperfusion. HBO therapy was delivered an hypebaric chamber (2.5 atmospheres absolute). Animals underwent two sessions of 60 minutes each at 6 hours and 20 hours after initiation of reperfusion. Male Wistar rats (n = 38) were randomized into four groups: sham, sham operated rats; Sham+HBO, sham operated rats exposed to HBO; I/R, animals submitted to I/R; and I/R+HBO, I/R rats exposed to HBO. Blood, urine, and kidney tissue were collected for biochemical, histologic, and immunohistochemical analyses. The histopathological evaluation of the ischemic injury used a grading scale of 0 to 4. HBO attenuated renal dysfunction after ischemia characterized by a significant decrease in blood urea nitrogen (BUN), serum creatinine, and proteinuria in the I/R+HBO group compared with I/R alone. In parallel, tubular function was improved resulting in significantly lower fractional excretions of sodium and potassium. Kidney sections from the I/R plus HBO group showed significantly lower acute kidney injury scores compared with the I/R group. HBO treatment significantly diminished proliferative activity in I/R (P < .05). There was no significant difference in macrophage infiltration or hemoxygenase-1 expression. In conclusion, HBO attenuated renal dysfunction in a kidney I/R injury model with a decrease in BUN, serum creatinine, proteinuria, and fractional excretion of sodium and potassium, associated with reduced histological damage.
Resumo:
Background: Hepatitis B virus (HBV) infection is a major cause of morbidity and mortality worldwide. Chronic hepatitis B infection is associated with an increased risk of cirrhosis, hepatic decompensation, and hepatocellular carcinoma. Our aim is to analyze, through a mathematical model, the potential impact of anti-HBV vaccine in the long-term (that is, decades after vaccination) number of LT. Methods: The model simulated that the prevalence of HBV infection was 0.5% and that approximately 20% of all the liver transplantation carried out in the state of Sao Paulo are due to HBV infection. Results: The theoretical model suggests that a vaccination program that would cover 80% of the target population would reach a maximum of about 14% reduction in the LT program. Conclusion: Increasing the vaccination coverage against HBV in the state of Sao Paulo would have a relatively low impact on the number of liver transplantation. In addition, this impact would take several decades to materialize due to the long incubation period of liver failure due to HBV.
Resumo:
The mechanisms through which electro-acupuncture (EA) and tricyclic antidepressants produce analgesia seem to be complementary: EA inhibits the transmission of noxious messages by activating supraspinal serotonergic and noradrenergic neurons that project to the spinal cord, whereas tricyclic antidepressants affect pain transmission by inhibiting the reuptake of norepinephrine and serotonin at the spinal level. This study utilized the tail-flick test and a model of post-incision pain to compare the antihyperalgesic effects of EA at frequencies of 2 or 100 Hz in rats treated with intraperitoneal or intrathecal amitriptyline (a tricyclic antidepressant). A gradual increase in the tail-flick latency (TFL) occurred during a 20-min period of EA. A strong and long-lasting reduction in post-incision hyperalgesia was observed after stimulation; the effect after 2 Hz lasting longer than after 100-Hz EA. Intraperitoneal or intrathecal amitriptyline potentiated the increase in TFL in the early moments of 2- or 100-Hz EA, and the intensity of the antihyperalgesic effect of 100-Hz EA in both the incised and non-incised paw. In contrast, it did not significantly change the intensity of the antihyperalgesic effect of 2-Hz EA. The EA-induced antihyperalgesic effects lasted longer after intraperitoneal or intrathecal amitriptyline than after saline, with this effect of amitriptyline being more evident after 100-than after 2-Hz EA. The synergetic effect of amitriptyline and EA against post-incision pain shown here may therefore represent an alternative for prolonging the efficacy of EA in the management of post-surgical clinical pain.
Resumo:
Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112: 225-236, 2012. First published September 29, 2011; doi: 10.1152/japplphysiol.01090.2010.-The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.
Resumo:
We report self-similar properties of periodic structures remarkably organized in the two-parameter space for a two-gene system, described by two-dimensional symmetric map. The map consists of difference equations derived from the chemical reactions for gene expression and regulation. We characterize the system by using Lyapunov exponents and isoperiodic diagrams identifying periodic windows, denominated Arnold tongues and shrimp-shaped structures. Period-adding sequences are observed for both periodic windows. We also identify Fibonacci-type series and Golden ratio for Arnold tongues, and period multiple-of-three windows for shrimps. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objectives: Our objective was to develop an experimental model for the noninvasive and objective evaluation of facial nerve regeneration in rats using a motor nerve conduction test (electromyography). Methods: Twenty-two rats were submitted to neurophysiological evaluation using motor nerve conduction of the mandibular branch of the facial nerve to obtain the compound muscle action potentials (CMAPs). To record the CM APs, we used two needle electrodes that were inserted into the lower lip muscle of the rat. A supramaximal electrical stimulus was applied, and the values of CMAP latency, amplitude, length, area, and stimulus intensity obtained from each side were compared by use of the Wilcoxon test. Results: There was no significant difference (all p > 0.05) in latency, amplitude, duration, area, or intensity of stimuli between the two sides. The amplitudes ranged between 1.61 and 8.30 mV, the latencies between 1.03 and 1.97 ms, and the stimulus intensities between 1.50 and 2.90 mA. Conclusions: This is a noninvasive, easy, and highly reproducible method that contributes to an improvement of the techniques previously described and may contribute to future studies of the degeneration and regeneration of the facial nerve.
Resumo:
Objective: To assess the risk factors for delayed diagnosis of uterine cervical lesions. Materials and Methods: This is a case-control study that recruited 178 women at 2 Brazilian hospitals. The cases (n = 74) were composed of women with a late diagnosis of a lesion in the uterine cervix (invasive carcinoma in any stage). The controls (n = 104) were composed of women with cervical lesions diagnosed early on (low-or high-grade intraepithelial lesions). The analysis was performed by means of logistic regression model using a hierarchical model. The socioeconomic and demographic variables were included at level I (distal). Level II (intermediate) included the personal and family antecedents and knowledge about the Papanicolaou test and human papillomavirus. Level III (proximal) encompassed the variables relating to individuals' care for their own health, gynecologic symptoms, and variables relating to access to the health care system. Results: The risk factors for late diagnosis of uterine cervical lesions were age older than 40 years (odds ratio [OR] = 10.4; 95% confidence interval [CI], 2.3-48.4), not knowing the difference between the Papanicolaou test and gynecological pelvic examinations (OR, = 2.5; 95% CI, 1.3-4.9), not thinking that the Papanicolaou test was important (odds ratio [OR], 4.2; 95% CI, 1.3-13.4), and abnormal vaginal bleeding (OR, 15.0; 95% CI, 6.5-35.0). Previous treatment for sexually transmissible disease was a protective factor (OR, 0.3; 95% CI, 0.1-0.8) for delayed diagnosis. Conclusions: Deficiencies in cervical cancer prevention programs in developing countries are not simply a matter of better provision and coverage of Papanicolaou tests. The misconception about the Papanicolaou test is a serious educational problem, as demonstrated by the present study.
Resumo:
Abstract Introduction We conducted the present study to investigate whether early large-volume crystalloid infusion can restore gut mucosal blood flow and mesenteric oxygen metabolism in severe sepsis. Methods Anesthetized and mechanically ventilated male mongrel dogs were challenged with intravenous injection of live Escherichia coli (6 × 109 colony-forming units/ml per kg over 15 min). After 90 min they were randomly assigned to one of two groups – control (no fluids; n = 13) or lactated Ringer's solution (32 ml/kg per hour; n = 14) – and followed for 60 min. Cardiac index, mesenteric blood flow, mean arterial pressure, systemic and mesenteric oxygen-derived variables, blood lactate and gastric carbon dioxide tension (PCO2; by gas tonometry) were assessed throughout the study. Results E. coli infusion significantly decreased arterial pressure, cardiac index, mesenteric blood flow, and systemic and mesenteric oxygen delivery, and increased arterial and portal lactate, intramucosal PCO2, PCO2 gap (the difference between gastric mucosal and arterial PCO2), and systemic and mesenteric oxygen extraction ratio in both groups. The Ringer's solution group had significantly higher cardiac index and systemic oxygen delivery, and lower oxygen extraction ratio and PCO2 gap at 165 min as compared with control animals. However, infusion of lactated Ringer's solution was unable to restore the PCO2 gap. There were no significant differences between groups in mesenteric oxygen delivery, oxygen extraction ratio, or portal lactate at the end of study. Conclusion Significant disturbances occur in the systemic and mesenteric beds during bacteremic severe sepsis. Although large-volume infusion of lactated Ringer's solution restored systemic hemodynamic parameters, it was unable to correct gut mucosal PCO2 gap.
Resumo:
Abstract Background Over the last years, a number of researchers have investigated how to improve the reuse of crosscutting concerns. New possibilities have emerged with the advent of aspect-oriented programming, and many frameworks were designed considering the abstractions provided by this new paradigm. We call this type of framework Crosscutting Frameworks (CF), as it usually encapsulates a generic and abstract design of one crosscutting concern. However, most of the proposed CFs employ white-box strategies in their reuse process, requiring two mainly technical skills: (i) knowing syntax details of the programming language employed to build the framework and (ii) being aware of the architectural details of the CF and its internal nomenclature. Also, another problem is that the reuse process can only be initiated as soon as the development process reaches the implementation phase, preventing it from starting earlier. Method In order to solve these problems, we present in this paper a model-based approach for reusing CFs which shields application engineers from technical details, letting him/her concentrate on what the framework really needs from the application under development. To support our approach, two models are proposed: the Reuse Requirements Model (RRM) and the Reuse Model (RM). The former must be used to describe the framework structure and the later is in charge of supporting the reuse process. As soon as the application engineer has filled in the RM, the reuse code can be automatically generated. Results We also present here the result of two comparative experiments using two versions of a Persistence CF: the original one, whose reuse process is based on writing code, and the new one, which is model-based. The first experiment evaluated the productivity during the reuse process, and the second one evaluated the effort of maintaining applications developed with both CF versions. The results show the improvement of 97% in the productivity; however little difference was perceived regarding the effort for maintaining the required application. Conclusion By using the approach herein presented, it was possible to conclude the following: (i) it is possible to automate the instantiation of CFs, and (ii) the productivity of developers are improved as long as they use a model-based instantiation approach.
Resumo:
The pulmonary crackling and the formation of liquid bridges are problems that for centuries have been attracting the attention of scientists. In order to study these phenomena, it was developed a canonical cubic lattice-gas like model to explain the rupture of liquid bridges in lung airways [A. Alencar et al., 2006, PRE]. Here, we further develop this model and add entropy analysis to study thermodynamic properties, such as free energy and force. The simulations were performed using the Monte Carlo method with Metropolis algorithm. The exchange between gas and liquid particles were performed randomly according to the Kawasaki dynamics and weighted by the Boltzmann factor. Each particle, which can be solid (s), liquid (l) or gas (g), has 26 neighbors: 6 + 12 + 8, with distances 1, √2 and √3, respectively. The energy of a lattice's site m is calculated by the following expression: Em = ∑k=126 Ji(m)j(k) in witch (i, j) = g, l or s. Specifically, it was studied the surface free energy of the liquid bridge, trapped between two planes, when its height is changed. For that, was considered two methods. First, just the internal energy was calculated. Then was considered the entropy. It was fond no difference in the surface free energy between this two methods. We calculate the liquid bridge force between the two planes using the numerical surface free energy. This force is strong for small height, and decreases as the distance between the two planes, height, is increased. The liquid-gas system was also characterized studying the variation of internal energy and heat capacity with the temperature. For that, was performed simulation with the same proportion of liquid and gas particle, but different lattice size. The scale of the liquid-gas system was also studied, for low temperature, using different values to the interaction Jij.