3 resultados para integrated water cycle
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The potential of the red alga Kappaphycus alvarezii to remove nutrients was tested to treat effluents of Trachinotus carolinus fish cultivation, and the production of carrageenan in this condition was analyzed. Experiments were conducted in four tanks of 8000 L with approximately 1200 fishes of 30 g each integrated with three tanks of 100 L with 700 g of K. alvarezii, as initial biomass per tank. Seawater was re-circulated between tanks with seaweed and with fish. As a control, three tanks with seawater circulating in an open system were utilized. Seawater samples were collected daily for 10 days and concentrations of nitrate, nitrite, ammonium and phosphate were determined in the inflow and outflow water of the tanks. Significant differences between both collecting points were considered as nutrient removal by the seaweed. Growth rates and carrageenan yields were also analyzed in seaweed cultivated in seawater and in effluents. Growth rates of seaweed cultivated in tanks were lower than those obtained in open sea and in laboratory cultivation. Effluents had concentrations of nitrate and nitrite ca. 100 times higher than in the control. Maximum values of nutrient removal on effluents were: nitrate= 18.2%; nitrite =50.8%; ammonium =70.5% and phosphate =26.8%. All plants survived throughout the experimental period, but some developed ""ice-ice"", a disease associated with physiological stress. After the experimental period, some plants selected and cultivated in open sea presented higher growth rates in 40 days, indicating nutrient storage. No significant differences between carrageenan yields of K alvarezii cultivated in seawater and in the effluents were observed. Our results show that K. alvarezii can be utilized as a biofilter for fish cultivation effluents, reducing the eutrophication process and can also be processed for carrageenan production, which provides an additional benefit to the fisheries. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The chemical stock of emerging contaminants in Brazilian drinking water is of great interest due to the poor water quality at surface water intakes. In addition, little is known about the effect of some contaminants, such as endocrine disrupting chemicals (EDCs), which may be present in both raw and treated water. The aim of this work was to evaluate selected emerging contaminants in Brazilian waters using both chemical and biological analyses. Sampling sites were established in different municipalities based upon raw water quality data. Estrone, 17 beta-estradiol, estriol, 17 alpha-ethinylestradiol, bisphenol A, 4-n-octylphenol and 4-n-nonylphenol were determined in the samples by liquid chromatography-tandem mass spectrometry. A yeast assay using a Saccharomyces cerevisiae bioluminescent bioreporter was used to evaluate the estrogenic activity of the water samples. The first integrated results revealed similarities between the two individual approaches, since higher values for the bioassay were accompanied by significant concentrations of some selected compounds in surface water samples. No estrogenicity was observed for drinking water samples. Our results also indicate that the usual paradigm of evaluating water quality by measuring selected EDCs in a given water sample via chemical analysis, needs to be reviewed since the observed estrogenicity of a water sample is now a better guiding parameter to the selection of samples and substances to be chemically investigated in further analysis. So far, the data bank produced in this work, i.e., the comparison between chemical burden and observed estrogenicity, is not yet sufficiently robust to fully guide this decision. (C) 2011 Elsevier B.V. All rights reserved.
Thermal design of a tray-type distillation column of an ammonia/water absorption refrigeration cycle
Resumo:
The goal of this paper is to present an analysis of a segmented weir sieve-tray distillation column for a 17.58 kW (5 TR) ammonia/water absorption refrigeration cycle. Balances of mass and energy were performed based on the method of Ponchon-Savarit, from which it was possible to determine the ideal number of trays. The analysis showed that four ideal trays were adequate for that small absorption refrigeration system having the feeding system to the column right above the second tray. It was carried out a sensitivity analysis of the main parameters. Vapor and liquid pressure drop constraint along with ammonia and water mass flow ratios defined the internal geometrical sizes of the column, such as the column diameter and height, as well as other designing parameters. Due to the lack of specific correlations, the present work was based on practical correlations used in the petrochemical and beverage production industries. The analysis also permitted to obtain the recommended values of tray spacing in order to have a compact column. The geometry of the tray turns out to be sensitive to the charge of vapor and, to a lesser extent, to the load of the liquid, being insensible to the diameter of tray holes. It was found a column efficiency of 50%. Finally, the paper presents some recommendations in order to have an optimal geometry for a compact size distillation column. (c) 2011 Elsevier Ltd. All rights reserved.