10 resultados para insulators

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overhead distribution lines are often exposed to lightning overvoltages, whose waveforms vary widely and can differ substantially from the standard impulse voltage waveform (1,2 - 50). Different models have been proposed for predicting the strength of insulation subjected to impulses of non-standard waveforms. One of the most commonly used is the disruptive effect model, for which there are different methods for the estimation of the parameters required for its application. This paper aims at evaluating the dielectric behavior of medium voltage insulators subjected to impulses of non-standard waveforms, as well as at evaluating two methods for predicting their dielectric strength against such impulses. The test results relative to the critical lightning impulse flashover voltage (U50) and the volt-time characteristics obtained for the positive and negative polarities of different voltage waveforms are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the hydrophobicity is usually an arduous parameter to be determined in the field, it has been pointed out as a good option to monitor aging of polymeric outdoor insulators. Concerning this purpose, digital image processing of photos taken from wet insulators has been the main technique nowadays. However, important challenges on this technique still remain to be overcome, such as; images from non-controlled illumination conditions can interfere on analyses and no existence of standard surfaces with different levels of hydrophobicity. In this paper, the photo image samples were digitally filtered to reduce the illumination influence, and hydrophobic surface samples were prepared from wetting silicon surfaces with solution of water-alcohol. Furthermore norevious studies triying to quantify and relate these properties in a mathematical function were found, that could be used in the field by the electrical companies. Based on such considerations, high quality images of countless hydrophobic surfaces were obtained and three different image processing methodologies, the fractal dimension and two Haralick textures descriptors, entropy and homogeneity, associated with several digital filters, were compared. The entropy parameter Haralick's descriptors filtered with the White Top-Hat filter presented the best result to classify the hydrophobicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion implantation of metal species into insulators provides a tool for the formation of thin, electrically conducting, surface layers with experimenter-controlled resistivity. High energy implantation of Pt and Ti into alumina accelerator components has been successfully employed to control high voltage surface breakdown in a number of cases. In the work described here we have carried out some basic investigations related to the origin of this phenomenon. By comparison of the results of alumina implanted with Ti at 75 keV with the results of prior investigations of polymers implanted with Pt at 49 eV and Au at 67 eV, we describe a physical model of the effect based on percolation theory and estimate the percolation parameters for the Ti-alumina composite. We estimate that the percolation dose threshold is about 4 x 10(16) cm(-2) and the maximum dose for which the system remains an insulator-conductor composite is about 10 x 10(16) cm(-2). The saturation electrical conductivity is estimated to be about 50 S/m. We conclude that the observed electrical conductivity properties of Ti-implanted alumina can be satisfactorily described by percolation theory. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697900]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Bose-Einstein condensation (BEC) has been observed in magnetic insulators in the last decade. The condensed bosons are magnons associated with an ordered magnetic phase induced by a magnetic field. We review the experiments in the spin-gap compound NiCl2-4SC(NH2)(2), in which the formation of BEC occurs by applying a magnetic field at low temperatures. This is a contribution to the celebration of the 50th anniversary of the Solid State and Low Temperature Laboratory of the University of So Paulo, where this compound was first magnetically characterized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonlocal resistance is studied in a two-dimensional system with a simultaneous presence of electrons and holes in a 20 nm HgTe quantum well. A large nonlocal electric response is found near the charge neutrality point in the presence of a perpendicular magnetic field. We attribute the observed nonlocality to the edge state transport via counterpropagating chiral modes similar to the quantum spin Hall effect at a zero magnetic field and graphene near a Landau filling factor nu = 0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our previous results on the nonperturbative calculations of the mean current and of the energy-momentum tensor in QED with the T-constant electric field are generalized to arbitrary dimensions. The renormalized mean values are found, and the vacuum polarization contributions and particle creation contributions to these mean values are isolated in the large T limit; we also relate the vacuum polarization contributions to the one-loop effective Euler-Heisenberg Lagrangian. Peculiarities in odd dimensions are considered in detail. We adapt general results obtained in 2 + 1 dimensions to the conditions which are realized in the Dirac model for graphene. We study the quantum electronic and energy transport in the graphene at low carrier density and low temperatures when quantum interference effects are important. Our description of the quantum transport in the graphene is based on the so-called generalized Furry picture in QED where the strong external field is taken into account nonperturbatively; this approach is not restricted to a semiclassical approximation for carriers and does not use any statistical assumptions inherent in the Boltzmann transport theory. In addition, we consider the evolution of the mean electromagnetic field in the graphene, taking into account the backreaction of the matter field to the applied external field. We find solutions of the corresponding Dirac-Maxwell set of equations and with their help we calculate the effective mean electromagnetic field and effective mean values of the current and the energy-momentum tensor. The nonlinear and linear I-V characteristics experimentally observed in both low-and high-mobility graphene samples are quite well explained in the framework of the proposed approach, their peculiarities being essentially due to the carrier creation from the vacuum by the applied electric field. DOI: 10.1103/PhysRevD.86.125022

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of nuclear spin-lattice relaxation rate T-1(-1), we follow the spin dynamics as a function of the applied magnetic field in two gapped quasi-one-dimensional quantum antiferromagnets: the anisotropic spin-chain system NiCl2-4SC(NH2)(2) and the spin-ladder system (C5H12N)(2)CuBr4. In both systems, spin excitations are confirmed to evolve from magnons in the gapped state to spinons in the gapless Tomonaga-Luttinger-liquid state. In between, T-1(-1) exhibits a pronounced, continuous variation, which is shown to scale in accordance with quantum criticality. We extract the critical exponent for T-1(-1), compare it to the theory, and show that this behavior is identical in both studied systems, thus demonstrating the universality of quantum-critical behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the charge dynamic structure factor of the one-dimensional Hubbard model with finite on-site repulsion U at half-filling. Numerical results from the time-dependent density matrix renormalization group are analyzed by comparison with the exact spectrum of the model. The evolution of the line shape as a function of U is explained in terms of a relative transfer of spectral weight between the two-holon continuum that dominates in the limit U -> infinity and a subset of the two-holon-two-spinon continuum that reconstructs the electron-hole continuum in the limit U -> 0. Power-law singularities along boundary lines of the spectrum are described by effective impurity models that are explicitly invariant under spin and eta-spin SU(2) rotations. The Mott-Hubbard metal-insulator transition is reflected in a discontinuous change of the exponents of edge singularities at U = 0. The sharp feature observed in the spectrum for momenta near the zone boundary is attributed to a van Hove singularity that persists as a consequence of integrability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed a first principles investigation on the electronic properties of 4f-rare earth substitutional impurities in zincblende gallium nitride (GaN:REGa, with RE=Eu, Gd, Tb, Dy, Ho, Er and Tm). The calculations were performed within the all electron methodology and the density functional theory. We investigated how the introduction of the on-site Hubbard U potential (GGA + U) corrects the electronic properties of those impurities. We showed that a self-consistent procedure to compute the Hubbard potential provides a reliable description on the position of the 4f-related energy levels with respect of the GaN valence band top. The results were compared to available data coming from a recent phenomenological model. (C) 2012 Elsevier B.V. All rights reserved.