3 resultados para ink reduction software
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The Distributed Software Development (DSD) is a development strategy that meets the globalization needs concerned with the increase productivity and cost reduction. However, the temporal distance, geographical dispersion and the socio-cultural differences, increased some challenges and, especially, added new requirements related with the communication, coordination and control of projects. Among these new demands there is the necessity of a software process that provides adequate support to the distributed software development. This paper presents an integrated approach of software development and test that considers distributed teams peculiarities. The approach purpose is to offer support to DSD, providing a better project visibility, improving the communication between the development and test teams, minimizing the ambiguity and difficulty to understand the artifacts and activities. This integrated approach was conceived based on four pillars: (i) to identify the DSD peculiarities concerned with development and test processes, (ii) to define the necessary elements to compose the integrated approach of development and test to support the distributed teams, (iii) to describe and specify the workflows, artifacts, and roles of the approach, and (iv) to represent appropriately the approach to enable the effective communication and understanding of it.
Resumo:
Dimensionality reduction is employed for visual data analysis as a way to obtaining reduced spaces for high dimensional data or to mapping data directly into 2D or 3D spaces. Although techniques have evolved to improve data segregation on reduced or visual spaces, they have limited capabilities for adjusting the results according to user's knowledge. In this paper, we propose a novel approach to handling both dimensionality reduction and visualization of high dimensional data, taking into account user's input. It employs Partial Least Squares (PLS), a statistical tool to perform retrieval of latent spaces focusing on the discriminability of the data. The method employs a training set for building a highly precise model that can then be applied to a much larger data set very effectively. The reduced data set can be exhibited using various existing visualization techniques. The training data is important to code user's knowledge into the loop. However, this work also devises a strategy for calculating PLS reduced spaces when no training data is available. The approach produces increasingly precise visual mappings as the user feeds back his or her knowledge and is capable of working with small and unbalanced training sets.
Resumo:
This study deals with the reduction of the stiffness in precast concrete structural elements of multi-storey buildings to analyze global stability. Having reviewed the technical literature, this paper present indications of stiffness reduction in different codes, standards, and recommendations and compare these to the values found in the present study. The structural model analyzed in this study was constructed with finite elements using ANSYS® software. Physical Non-Linearity (PNL) was considered in relation to the diagrams M x N x 1/r, and Geometric Non-Linearity (GNL) was calculated following the Newton-Raphson method. Using a typical precast concrete structure with multiple floors and a semi-rigid beam-to-column connection, expressions for a stiffness reduction coefficient are presented. The main conclusions of the study are as follows: the reduction coefficients obtained from the diagram M x N x 1/r differ from standards that use a simplified consideration of PNL; the stiffness reduction coefficient for columns in the arrangements analyzed were approximately 0.5 to 0.6; and the variation of values found for stiffness reduction coefficient in concrete beams, which were subjected to the effects of creep with linear coefficients from 0 to 3, ranged from 0.45 to 0.2 for positive bending moments and 0.3 to 0.2 for negative bending moments.