22 resultados para inhalation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective The objective of this study was to assess the acute effect of intranasally administered oxytocin (OT) on subjective states, cardiovascular, and endocrine parameters in healthy volunteers who inhaled 7.5% CO2. Methods Forty-five subjects were allocated into three matched groups of subjects who received 24?international units (IU) of OT, 2?mg of lorazepam (LZP), or placebo (PL). The challenge consisted of medical air inhalation for 20?min, 10?min of rest, and CO2 7.5% inhalation for 20?min. Subjective effects were evaluated by self-assessment scales; heart rate, blood pressure, skin conductance, and salivary cortisol were also measured. Assessments were performed at four time points: (i) baseline (-15?min); (ii) post-air inhalation (90?min); (iii) post-CO2 inhalation (120?min), and (iv) post-test (160?min). Results CO2 inhalation significantly increased the anxiety score in the PL group compared with the post-air measurement but not in the OT or LZP groups. The LZP reduced anxiety after medical air inhalation. Other parameters evaluated were not affected by OT. Conclusion OT, as well as LZP, prevented CO2-induced anxiety, suggesting that this hormone has anxiolytic properties. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
The study was designed to investigate the impact of air pollution on monthly inhalation/nebulization procedures in Ribeirao Preto, Sao Paulo State, Brazil, from 2004 to 2010. To assess the relationship between the procedures and particulate matter (PM10) a Bayesian Poisson regression model was used, including a random factor that captured extra-Poisson variability between counts. Particulate matter was associated with the monthly number of inhalation/nebulization procedures, but the inclusion of covariates (temperature, precipitation, and season of the year) suggests a possible confounding effect. Although other studies have linked particulate matter to an increasing number of visits due to respiratory morbidity, the results of this study suggest that such associations should be interpreted with caution.
Resumo:
To investigate the effects of repeated crack-cocaine inhalation on spermatogenesis of pubertal and mature Balb/c mice, ten young (Y-ex) and ten adult (A(ex)) Balb/c mice were exposed to the smoke from 5 g of crack with 57.7% of pure cocaine in an inhalation chamber, 5 days/week for 2 months. The young (Y-c) and adult (A(c)) control animals (n = 10) were kept in a specially built and controlled animal house facility. The morphologic analysis of both testes of all animals included the analysis of quantitative and qualitative histologic parameters to assess the effect of crack-cocaine on spermatogenesis and Leydig cells. Apoptosis was determined by immunolabeling with caspase-3 antibodies. Compared to the Y-c animals, Y-ex animals showed a significant reduction in the number of stage VII tubules per testis (p = 0.02), Sertoli cells (p < 0.001) and elongated spermatids (p = 0.001). Comparisons between the Y-ex and A(ex) groups identified a significant reduction in the number of Sertoli cells (p < 0.001) and round spermatids (p < 0.001) in the Y-ex group and a significant increase in apoptotic Leydig cells (p = 0.04) in the A(ex) group. The experimental results indicate that crack-cocaine smoke inhalation induced spermatogenesis disruption in chronically exposed mice, particularly in pubertal mice.
Resumo:
The study was designed to investigate the impact of air pollution on monthly inhalation/nebulization procedures in Ribeirão Preto, São Paulo State, Brazil, from 2004 to 2010. To assess the relationship between the procedures and particulate matter (PM10) a Bayesian Poisson regression model was used, including a random factor that captured extra-Poisson variability between counts. Particulate matter was associated with the monthly number of inhalation/nebulization procedures, but the inclusion of covariates (temperature, precipitation, and season of the year) suggests a possible confounding effect. Although other studies have linked particulate matter to an increasing number of visits due to respiratory morbidity, the results of this study suggest that such associations should be interpreted with caution.
Resumo:
The aim of this study was to evaluate, histometrically, the bone healing of the molar extraction socket just after cigarette smoke inhalation (CSI). Forty male Wistar rats were randomly assigned to a test group (animals exposed to CSI, starting 3 days before teeth extraction and maintained until sacrifice; n=20) and a control group (animals never exposed to CSI; n=20). Second mandibular molars were bilaterally extracted and the animals (n=5/group/period) were sacrificed at 3, 7, 10 and 14 days after surgery. Digital images were analyzed according to the following histometric parameters: osteoid tissue (OT), remaining area (RA), mineralized tissue (MT) and non-mineralized tissue (NMT) in the molar socket. Intergroup analysis showed no significant differences at day 3 (p>0.05) for all parameters. On the 7th day, CSI affected negatively (p<0.05) bone formation with respect to NMT and RA (MT: 36%, NMT: 53%, RA: 12%; and MT: 39%, NMT: 29%, RA: 32%, for the control and test groups, respectively). In contrast, no statistically significant differences (p>0.05) were found at days 10 and 14. It may be concluded that CSI may affect socket healing from the early events involved in the healing process, which may be critical for the amount and quality of new-bone formation in smokers.
Resumo:
Bronchial hyperresponsiveness is a hallmark of asthma and many factors modulate bronchoconstriction episodes. A potential correlation of formaldehyde (FA) inhalation and asthma has been observed; however, the exact role of FA remains controversial. We investigated the effects of FA inhalation on Ovalbumin (OVA) sensitisation using a parameter of respiratory mechanics. The involvement of nitric oxide (NO) and cyclooxygenase-derived products were also evaluated. The rats were submitted, or not, to FA inhalation (1%, 90 min/day, 3 days) and were OVA-sensitised and challenged 14 days later. Our data showed that previous FA exposure in allergic rats reduced bronchial responsiveness, respiratory resistance (Rrs) and elastance (Ers) to methacholine. FA exposure in allergic rats also increased the iNOS gene expression and reduced COX-1. L-NAME treatment exacerbated the bronchial hyporesponsiveness and did not modify the Ers and Rrs, while Indomethacin partially reversed all of the parameters studied. The L-NAME and Indomethacin treatments reduced leukotriene B4 levels while they increased thromboxane B2 and prostaglandin E2. In conclusion, FA exposure prior to OVA sensitisation reduces the respiratory mechanics and the interaction of NO and PGE2 may be representing a compensatory mechanism in order to protect the lung from bronchoconstriction effects.
Resumo:
Smoking crack cocaine involves the inhalation of cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). Although there is evidence that cocaine is neurotoxic, the neurotoxicity of AEME has never been evaluated. AEME seems to have cholinergic agonist properties in the cardiovascular system; however, there are no reports on its effects in the central nervous system. The aim of this study was to investigate the neurotoxicity of AEME and its possible cholinergic effects in rat primary hippocampal cell cultures that were exposed to different concentrations of AEME, cocaine, and a cocaineAEME combination. We also evaluated the involvement of muscarinic cholinergic receptors in the neuronal death induced by these treatments using concomitant incubation of the cells with atropine. Neuronal injury was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The results of the viability assays showed that AEME is a neurotoxic agent that has greater neurotoxic potential than cocaine after 24 and 48 h of exposure. We also showed that incubation for 48 h with a combination of both compounds in equipotent concentrations had an additive neurotoxic effect. Although both substances decreased cell viability in the MTT assay, only cocaine increased LDH release. Caspase-3 activity was increased after 3 and 6 h of incubation with 1mM cocaine and after 6 h of 0.1 and 1.0mM AEME exposure. Atropine prevented the AEME-induced neurotoxicity, which suggests that muscarinic cholinergic receptors are involved in AEME's effects. In addition, binding experiments confirmed that AEME has an affinity for muscarinic cholinergic receptors. Nevertheless, atropine was not able to prevent the neurotoxicity produced by cocaine and the cocaineAEME combination, suggesting that these treatments activated other neuronal death pathways. Our results suggest a higher risk for neurotoxicity after smoking crack cocaine than after cocaine use alone.
Resumo:
Background: Exposure to fine fractions of particulate matter (PM2.5) is associated with increased hospital admissions and mortality for respiratory and cardiovascular disease in children and the elderly. This study aims to estimate the toxicological risk of PM2.5 from biomass burning in children and adolescents between the age of 6 and 14 in Tangara da Serra, a municipality of Subequatorial Brazilian Amazon. Methods: Risk assessment methodology was applied to estimate the risk quotient in two scenarios of exposure according to local seasonality. The potential dose of PM2.5 was estimated using the Monte Carlo simulation, stratifying the population by age, gender, asthma and Body Mass Index (BMI). Results: Male asthmatic children under the age of 8 at normal body rate had the highest risk quotient among the subgroups. The general potential average dose of PM2.5 was 1.95 mu g/kg.day (95% CI: 1.62 - 2.27) during the dry scenario and 0.32 mu g/kg. day (95% CI: 0.29 - 0.34) in the rainy scenario. During the dry season, children and adolescents showed a toxicological risk to PM2.5 of 2.07 mu g/kg. day (95% CI: 1.85 - 2.30). Conclusions: Children and adolescents living in the Subequatorial Brazilian Amazon region were exposed to high levels of PM2.5 resulting in toxicological risk for this multi-pollutant. The toxicological risk quotients of children in this region were comparable or higher to children living in metropolitan regions with PM2.5 air pollution above the recommended limits to human health.
Resumo:
Objective: Patients with high cervical spinal cord injury are usually dependent on mechanical ventilation support, which, albeit life saving, is associated with complications and decreased life expectancy because of respiratory infections. Diaphragm pacing stimulation (DPS), sometimes referred to as electric ventilation, induces inhalation by stimulating the inspiratory muscles. Our objective was to highlight the indications for and some aspects of the surgical technique employed in the laparoscopic insertion of the DPS electrodes, as well as to describe five cases of tetraplegic patients submitted to the technique. Methods: Patient selection involved transcutaneous phrenic nerve studies in order to determine whether the phrenic nerves were preserved. The surgical approach was traditional laparoscopy, with four ports. The initial step was electrical mapping in order to locate the "motor points" (the points at which stimulation would cause maximal contraction of the diaphragm). If the diaphragm mapping was successful, four electrodes were implanted into the abdominal surface of the diaphragm, two on each side, to stimulate the branches of the phrenic nerve. Results: Of the five patients, three could breathe using DPS alone for more than 24 h, one could do so for more than 6 h, and one could not do so at all. Conclusions: Although a longer follow-up period is needed in order to reach definitive conclusions, the initial results have been promising. At this writing, most of our patients have been able to remain ventilator-free for long periods of time.
Resumo:
The current study aimed to determine the role of oxidants in cardiac and pulmonary toxicities induced by chronic exposure to ROFA. Eighty Wistar rats were divided into four groups: G1 (10 mu L Saline), G2 (ROFA 50 mu g/10 mu L), G3 (ROFA 250 mu g/10 mu L) and G4 (ROFA 500 mu g/10 mu L). Rats received ROFA by nasotropic instillation for 90 days. After that, they were euthanized and bronchoalveolar lavage (BAL) was performed for total count of leukocytes, protein and lactate dehydrogenase (LDH) determinations. Lungs and heart were removed to measure lipid peroxidation (MDA), catalase (CAT) and superoxide dismutase (SOD) activity. BAL presented an increase in leukocytes count in G4 in comparison to the Saline group (p = 0.019). In lung, MDA level was not modified by ROFA, while CAT was higher in G4 when compared to all other groups (p = 0.013). In heart, G4 presented an increase in MDA (p = 0.016) and CAT (p = 0.027) levels in comparison to G1. The present study demonstrated cardiopulmonary oxidative changes after a chronic ROFA exposure. More specifically, the heart tissue seems to be more susceptible to oxidative effects of long-term exposure to ROFA than the lung.
Resumo:
Clinical evidence has identified the pulmonary circulation as an important target of air pollution. It was previously demonstrated that in vitro exposure to fine particulate matter (aerodynamic diameter <= 2.5 mu m, PM2.5) induces endothelial dysfunction in isolated pulmonary arteries. We aimed to investigate the effects of in vivo exposure to urban concentrated PM2.5 on rat pulmonary artery reactivity and the mechanisms involved. For this, adult Wistar rats were exposed to 2 weeks of concentrated Sao Paulo city air PM2.5 at an accumulated daily dose of approximately 600 mu g/m(3). Pulmonary arteries isolated from PM2.5-exposed animals exhibited impaired endothelium-dependent relaxation to acetylcholine without significant changes in nitric oxide donor response compared to control rats. PM2.5 caused vascular oxidative stress and enhanced protein expression of Cu/Zn- and Mn-superoxide dismutase in the pulmonary artery. Protein expression of endothelial nitric oxide synthase (eNOS) was reduced, while tumor necrosis factor (TNF)-alpha was enhanced by PM2.5 inhalation in pulmonary artery. There was a significant positive correlation between eNOS expression and maximal relaxation response (E-max) to acetylcholine. A negative correlation was found between vascular TNF-alpha expression and E-max to acetylcholine. Plasma cytokine levels, blood cells count and coagulation parameters were similar between control and PM2.5-exposed rats. The present findings showed that in vivo daily exposure to concentrated urban PM2.5 could decrease endothelium-dependent relaxation and eNOS expression on pulmonary arteries associated with local high TNF-alpha level but not systemic pro-inflammatory factors. Taken together, the present results elucidate the mechanisms underlying the trigger of cardiopulmonary diseases induced by urban ambient levels of PM2.5. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We evaluated the effects of aerobic exercise (AE) on airway inflammation, exhaled nitric oxide levels (ENO), airway remodeling, and the expression of Thl, Th2 and regulatory cytokines in a guinea pig asthma model. Animals were divided into 4 groups: non-trained and non-sensitized (C), non-sensitized and AE (AE), ovalbumin-sensitized and non-trained (OVA), and OVA-sensitized and AE (OVA + AE). OVA inhalation was performed for 8 weeks, and AE was conducted for 6 weeks beginning in the 3rd week of OVA sensitization. Compared to the other groups, the OVA + AE group had a reduced density of eosinophils and lymphocytes, reduced expression of interleukin (IL)-4 and IL-13 and an increase in epithelium thickness (p < 0.05). AE did not modify airway remodeling or ENO in the sensitized groups (p > 0.05). Neither OVA nor AE resulted in differences in the expression of IL-2, IFN-gamma, IL-10 or IL1-ra. Our results show that AE reduces the expression of Th2 cytokines and allergic airway inflammation and induces epithelium remodeling in sensitized guinea pigs. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.
Resumo:
Hantavirus disease is caused by the hantavirus, which is an RNA virus belonging to the family Bunyaviridae. Hantavirus disease is an anthropozoonotic infection transmitted through the inhalation of aerosols from the excreta of hantavirus-infected rodents. In the county of Itacoatiara in the state of Amazonas (AM), Brazil, the first human cases of hantavirus pulmonary and cardiovascular syndrome were described in July 2004. These first cases were followed by two fatal cases, one in the municipality of Maues in 2005 and another in Itacoatiara in 2007. In this study, we investigated the antibody levels to hantavirus in a population of 1,731 individuals from four different counties of AM. Sera were tested by IgG/IgM-enzyme-linked immune-sorbent assay using a recombinant nucleocapsid protein of the Araraquara hantavirus as an antigen. Ten sera were IgG positive to hantavirus (0.6%). Among the positive sera, 0.8% (1/122), 0.4% (1/256), 0.2% (1/556) and 0.9% (7/797) were from Atalaia do Norte, Careiro Castanho, Itacoatiara and Labrea, respectively. None of the sera in this survey were IgM-positive. Because these counties are distributed in different areas of AM, we can assume that infected individuals are found throughout the entire state, which suggests that hantavirus disease could be a local emerging health problem.
Resumo:
Background: Mechanisms linking behavioral stress and inflammation are poorly understood, mainly in distal lung tissue. Objective: We have investigated whether the forced swim stress (FS) could modulate lung tissue mechanics, iNOS, cytokines, oxidative stress activation, eosinophilic recruitment, and remodeling in guinea pigs (GP) with chronic pulmonary inflammation. Methods: The GP were exposed to ovalbumin or saline aerosols (2x/wk/4wks, OVA, and SAL). Twenty-four hours after the 4th inhalation, the GP were submitted to the FS protocol (5x/wk/2wks, SAL-S, and OVA-S). Seventy-two hours after the 7th inhalation, lung strips were cut and tissue resistance (Rt) and elastance (Et) were obtained (at baseline and after OVA and Ach challenge). Strips were submitted to histopathological evaluation. Results: The adrenals' weight, the serum cortisol, and the catecholamines were measured. There was an increase in IL-2, IL-5, IL-13, IFN-gamma, iNOS, 8-iso-PGF2 alpha, and in %Rt and %Et after Ach challenge in the SAL-S group compared to the SAL one. The OVA-S group has had an increase in %Rt and %Et after the OVA challenge, in %Et after the Ach and in IL-4, 8-iso-PGF2 alpha, and actin compared to the OVA. Adrenal weight and cortisol serum were increased in stressed animals compared to nonstressed ones, and the catecholamines were unaltered. Conclusion & clinical relevance: Repeated stress has increased distal lung constriction, which was associated with an increase of actin, IL-4, and 8-iso-PGF2 alpha levels. Stress has also induced an activation of iNOS, cytokines, and oxidative stress pathways.