3 resultados para income support

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To analyze cause-specifi c mortality rates according to the relative income hypothesis. METHODS: All 96 administrative areas of the city of Sao Paulo, southeastern Brazil, were divided into two groups based on the Gini coefficient of income inequality: high (>= 0.25) and low (<0.25). The propensity score matching method was applied to control for confounders associated with socioeconomic differences among areas. RESULTS: The difference between high and low income inequality areas was statistically significant for homicide (8.57 per 10,000; 95% CI: 2.60; 14.53); ischemic heart disease (5.47 per 10,000 [95% CI 0.76; 10.17]); HIV/AIDS (3.58 per 10,000 [95% CI 0.58; 6.57]); and respiratory diseases (3.56 per 10,000 [95% CI 0.18; 6.94]). The ten most common causes of death accounted for 72.30% of the mortality difference. Infant mortality also had signifi cantly higher age-adjusted rates in high inequality areas (2.80 per 10,000 [95% CI 0.86; 4.74]), as well as among males (27.37 per 10,000 [95% CI 6.19; 48.55]) and females (15.07 per 10,000 [95% CI 3.65; 26.48]). CONCLUSIONS: The study results support the relative income hypothesis. After propensity score matching cause-specifi c mortality rates was higher in more unequal areas. Studies on income inequality in smaller areas should take proper accounting of heterogeneity of social and demographic characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Support for the adverse effect of high income inequality on population health has come from studies that focus on larger areas, such as the US states, while studies at smaller geographical areas (eg, neighbourhoods) have found mixed results. Methods We used propensity score matching to examine the relationship between income inequality and mortality rates across 96 neighbourhoods (distritos) of the municipality of Sao Paulo, Brazil. Results Prior to matching, higher income inequality distritos (Gini >= 0.25) had slightly lower overall mortality rates (2.23 per 10 000, 95% CI -23.92 to 19.46) compared to lower income inequality areas (Gini <0.25). After propensity score matching, higher inequality was associated with a statistically significant higher mortality rate (41.58 per 10 000, 95% CI 8.85 to 73.3). Conclusion In Sao Paulo, the more egalitarian communities are among some of the poorest, with the worst health profiles. Propensity score matching was used to avoid inappropriate comparisons between the health status of unequal (but wealthy) neighbourhoods versus equal (but poor) neighbourhoods. Our methods suggest that, with proper accounting of heterogeneity between areas, income inequality is associated with worse population health in Sao Paulo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To analyze cause-specific mortality rates according to the relative income hypothesis. METHODS: All 96 administrative areas of the city of São Paulo, southeastern Brazil, were divided into two groups based on the Gini coefficient of income inequality: high (>0.25) and low (<0.25). The propensity score matching method was applied to control for confounders associated with socioeconomic differences among areas. RESULTS: The difference between high and low income inequality areas was statistically significant for homicide (8.57 per 10,000; 95%CI: 2.60;14.53); ischemic heart disease (5.47 per 10,000 [95%CI 0.76;10.17]); HIV/AIDS (3.58 per 10,000 [95%CI 0.58;6.57]); and respiratory diseases (3.56 per 10,000 [95%CI 0.18;6.94]). The ten most common causes of death accounted for 72.30% of the mortality difference. Infant mortality also had significantly higher age-adjusted rates in high inequality areas (2.80 per 10,000 [95%CI 0.86;4.74]), as well as among males (27.37 per 10,000 [95%CI 6.19;48.55]) and females (15.07 per 10,000 [95%CI 3.65;26.48]). CONCLUSIONS: The study results support the relative income hypothesis. After propensity score matching cause-specific mortality rates was higher in more unequal areas. Studies on income inequality in smaller areas should take proper accounting of heterogeneity of social and demographic characteristics.