6 resultados para inbred mouse strains

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intranasal inoculation of equid herpesvirus type-1 (EHV-1) Brazilian strains A4/72 and A9/92 induced an acute and lethal infection in four different inbred mouse strains. Clinical and neurological signs appeared between the 2nd and 3rd day post inoculation (dpi) and included weight loss, ruffled fur, a hunched posture, crouching in corners, nasal and ocular discharges, dyspnoea, dehydration and increased salivation. These signs were followed by increased reactivity to external stimulation, seizures, recumbency and death. The virus was recovered consistently from the brain and viscera of all mice with neurological signs. Histopathological changes consisted of leptomeningitis, focal haemorrhage, ventriculitis, neuronal degeneration and necrosis, neuronophagia, non-suppurative inflammation, multifocal gliosis and perivascular infiltration of polymorphonuclear and mononuclear cells. Immunohistochemical examination demonstrated that EHV-1 strains A4/72 and A9/92 replicated in neurons of the olfactory bulb, the cortex and the hippocampus. In contrast, mice inoculated with the EHV-1 Brazilian strain A3/97 showed neither weight loss nor apparent clinical or neurological signs; however, the virus was recovered consistently from their lungs at 3 dpi. These three EHV-1 strains showed distinct degrees of virulence and tissue tropism in mice. EHV-1 strains A4/72 and A9/92 exhibited a high degree of central nervous system tropism with neuroinvasion and neurovirulence. EHV-1 strain A3/97 was not neurovirulent despite being detected in the brains of infected BALB/c nude mice. These findings indicate that several inbred mouse strains are susceptible to neuropathogenic EHV-1 strains and should be useful models for studying the pathogenesis and mechanisms contributing to EHV-induced myeloencephalopathy in horses. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Pain markedly activates the hypothalamic-pituitary-adrenal (HPA) axis and increases plasma corticosterone release interfering significantly with nociceptive behaviour as well as the mechanism of action of analgesic drugs. Aims/Methods: In the present study, we monitored the time course of circulating corticosterone in two mouse strains (C57Bl/6 and Balb/C) under different pain models. In addition, the stress response was investigated following animal handling, intrathecal (i.t.) manipulation and habituation to environmental conditions commonly used in nociceptive experimental assays. We also examined the influence of within-cage order of testing on plasma corticosterone. Results: Subcutaneous injection of capsaicin precipitated a prompt stress response whereas carrageenan and complete Freund's adjuvant induced an increased corticosterone release around the third hour post-injection. However, carrageenan induced a longer increased corticosterone in C57Bl/6 mice. In partial sciatic nerve ligation, neuropathic pain model corticosterone increased only in the first days whereas mechanical hypersensitivity remained much longer. Animal handling also represents an important stressor whereas the i.t. injection per se does not exacerbate the handling-induced stress response. Moreover, the order of testing animals from the same cage does not interfere with plasma corticosterone levels in the intrathecal procedure. Animal habituation to the testing apparatus also does not reduce the immediate corticosterone increase as compared with non-habituated mice. Conclusion: Our data indicate that HPA axis activation in acute and chronic pain models is time dependent and may be dissociated from evoked hyperalgesia. Therefore, HPA-axis activation represents an important variable to be considered when designing experimental assays of persistent pain as well as for interpretation of data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Regulatory T (Treg) cells are fundamental in the control of immunity and excessive tissue pathology. In paracoccidioidomycosis, an endemic mycosis of Latin America, the immunoregulatory mechanisms that control the progressive and regressive forms of this infection are poorly known. Due to its modulatory activity on Treg cells, we investigated the effects of anti-CD25 treatment over the course of pulmonary infection in resistant (A/J) and susceptible (B10.A) mice infected with Paracoccidioides brasiliensis. We verified that the resistant A/J mice developed higher numbers and more potent Treg cells than susceptible B10.A mice. Compared to B10.A cells, the CD4(+)CD25(+)Foxp3(+) Treg cells of A/J mice expressed higher levels of CD25, CTLA4, GITR, Foxp3, LAP and intracellular IL-10 and TGF-beta. In both resistant and susceptible mice, anti-CD25 treatment decreased the CD4(+)CD25(+)Foxp3(+) Treg cell number, impaired indoleamine 2,3-dioxygenase expression and resulted in decreased fungal loads in the lungs, liver and spleen. In A/J mice, anti-CD25 treatment led to an early increase in T cell immunity, demonstrated by the augmented influx of activated CD4(+) and CD8(+) T cells, macrophages and dendritic cells to the lungs. At a later phase, the mild infection was associated with decreased inflammatory reactions and increased Th1/Th2/Th17 cytokine production. In B10.A mice, anti-CD25 treatment did not alter the inflammatory reactions but increased the fungicidal mechanisms and late secretion of Th1/Th2/Th17 cytokines. Importantly, in both mouse strains, the early depletion of CD25(+) cells resulted in less severe tissue pathology and abolished the enhanced mortality observed in susceptible mice. In conclusion, this study is the first to demonstrate that anti-CD25 treatment is beneficial to the progressive and regressive forms of paracoccidioidomycosis, potentially due to the anti-CD25-mediated reduction of Treg cells, as these cells have suppressive effects on the early T cell response in resistant mice and the clearance mechanisms of fungal cells in susceptible mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Th1/Th2 balance represents an important factor in the pathogenesis of renal ischemia-reperfusion injury (IRI). In addition, IRI causes a systemic inflammation that can affect other tissues, such as the lungs. To investigate the ability of renal IRI to modulate pulmonary function in a specific model of allergic inflammation, C57Bl/6 mice were immunized with ovalbumin/albumen on days 0 and 7 and challenged with an ovalbumin (OA) aerosol on days 14 and 21. After 24 h of the second antigen challenge, the animals were subjected to 45 minutes of ischemia. After 24 h of reperfusion, the bronchoalveolar lavage (BAL) fluid, blood and lung tissue were collected for analysis. Serum creatinine levels increased in both allergic and non-immunized animals subjected to IRI. However, BAL analysis showed a reduction in the total cells (46%) and neutrophils (58%) compared with control allergic animals not submitted to IRI. In addition, OA challenge induced the phosphorylation of ERK and Akt and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung homogenates. After renal IRI, the phosphorylation of ERK and expression of COX-2 and iNOS were markedly reduced; however, there was no difference in the phosphorylation of Akt between sham and ischemic OA-challenged animals. Mucus production was also reduced in allergic mice after renal IRI. IL-4, IL-5 and IL-13 were markedly down-regulated in immunized/challenged mice subjected to IRI. These results suggest that renal IRI can modulate lung allergic inflammation, probably by altering the Th1/Th2 balance and, at least in part, by changing cellular signal transduction factors. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis due to their genetic backgrounds. They also differ with respect to several features of fluoride (F) metabolism and metabolic handling of water. This study was done to determine whether differences in F metabolism could be explained by diversities in the profile of protein expression in kidneys. Weanling, male A/J mice (susceptible to dental fluorosis, n = 18) and 129P3/J mice (resistant, n = 18) were housed in pairs and assigned to three groups given low-F food and drinking water containing 0, 10 or 50 ppm [F] for 7 weeks. Renal proteome profiles were examined using 2D-PAGE and LC-MS/MS. Quantitative intensity analysis detected between A/J and 129P3/J strains 122, 126 and 134 spots differentially expressed in the groups receiving 0, 10 and 50 ppmF, respectively. From these, 25, 30 and 32, respectively, were successfully identified. Most of the proteins were related to metabolic and cellular processes, followed by response to stimuli, development and regulation of cellular processes. In F-treated groups, PDZK-1, a protein involved in the regulation of renal tubular reabsorption capacity was down-modulated in the kidney of 129P3/J mice. A/J and 129P3/J mice exhibited 11 and 3 exclusive proteins, respectively, regardless of F exposure. In conclusion, proteomic analysis was able to identify proteins potentially involved in metabolic handling of F and water that are differentially expressed or even not expressed in the strains evaluated. This can contribute to understanding the molecular mechanisms underlying genetic susceptibility to dental fluorosis, by indicating key-proteins that should be better addressed in future studies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Placental malaria (PM) is one major feature of malaria during pregnancy. A murine model of experimental PM using BALB/c mice infected with Plasmodium berghei ANKA was recently established, but there is need for additional PM models with different parasite/host combinations that allow to interrogate the involvement of specific host genetic factors in the placental inflammatory response to Plasmodium infection. Methods: A mid-term infection protocol was used to test PM induction by three P. berghei parasite lines, derived from the K173, NK65 and ANKA strains of P. berghei that fail to induce experimental cerebral malaria (ECM) in the susceptible C57BL/6 mice. Parasitaemia course, pregnancy outcome and placenta pathology induced by the three parasite lines were compared. Results: The three P. berghei lines were able to evoke severe PM pathology and poor pregnancy outcome features. The results indicate that parasite components required to induce PM are distinct from ECM. Nevertheless, infection with parasites of the ANKA Delta pm4 line, which lack expression of plasmepsin 4, displayed milder disease phenotypes associated with a strong innate immune response as compared to infections with NK65 and K173 parasites. Conclusions: Infection of pregnant C57BL/6 females with K173, NK65 and ANKA Delta pm4 P. berghei parasites provide experimental systems to identify host molecular components involved in PM pathogenesis mechanisms.