5 resultados para in-situ test

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron has been suggested to reduce the erosive potential of cola drinks in vitro. Objective: The aim of this study was to evaluate in situ the effect of ferrous sulfate supplementation on the inhibition of the erosion caused by a cola drink. Material and Methods: Ten adult volunteers participated in a crossover protocol conducted in two phases of 5 days, separated by a washout period of 7 days. In each phase, they wore palatal devices containing two human enamel and two human dentin blocks. The volunteers immersed the devices for 5 min in 150 mL of cola drink (Coca-Cola (TM), pH 2.6), containing ferrous sulfate (10 mmol/L) or not (control), 4 times per day. The effect of ferrous sulfate on the inhibition of erosion was evaluated by profilometry (wear). Data were analyzed by paired t tests (p<0.05). Results: The mean wear (+/- se) was significantly reduced in the presence of ferrous sulfate, both for enamel (control: 5.8 +/- 1.0 mu m; ferrous sulfate: 2.8 +/- 0.6 mu m) and dentin (control: 4.8 +/- 0.8 mu m; ferrous sulfate: 1.7 +/- 0.7 mu m). Conclusions: The supplementation of cola drinks with ferrous sulfate can be a good alternative for the reduction of their erosive potential. Additional studies should be done to test if lower ferrous sulfate concentrations can also have a protective effect as well as the combination of ferrous sulfate with other ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the erosive potential of orange juice modified with food-approved additives: 0.4 g/l of calcium (Ca) from calcium lactate pentahydrate, 0.2 g/l of linear sodium polyphosphate (LPP) or their combination (Ca+LPP) were added to a commercially available orange juice (negative control, C-). A commercially available calcium-modified orange juice (1.6 g/l of calcium) was the positive control (C+). These juices were tested using a short-term erosion in situ model, consisting of a five-phase, single-blind crossover clinical trial involving 10 subjects. In each phase, subjects inserted custom-made palatal appliances containing 8 bovine enamel specimens in the mouth and performed erosive challenges for a total of 0 (control), 10, 20, and 30 min. Two specimens were randomly removed from the appliances after each challenge period. Enamel surface microhardness was measured before and after the clinical phase and the percentage of surface microhardness change (%SMC) was determined. Before the procedures, in each phase, the subjects performed a taste test, where the juice assigned to that phase was blindly compared to C-. Overall, C+ showed the lowest %SMC, being the least erosive solution (p < 0.05), followed by Ca+LPP and Ca, which did not differ from each other (p > 0.05). LPP and C- were the most erosive solutions (p <0.05). Taste differences were higher for C+ (5/10 subjects) and Ca (4/10 subjects), but detectable in all groups, including C- (2/10 subjects). Calcium reduced the erosive potential of the orange juice, while no protection was observed for LPP. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of titanium tetrafluoride (TiF4) formulations on enamel carious demineralization in situ. Thirteen subjects took part in this cross-over, split-mouth, double-blind study performed in three phases of 14 d each. In each subject, two sound and two predemineralized specimens of bovine enamel were worn intra-orally and plaque accumulation was allowed. One sound and one predemineralized specimen in each subject was treated once with sodium fluoride (NaF) varnish or solution (Treatment A); TiF4 varnish or solution (Treatment B); or placebo varnish or no treatment (Treatment C). The initially sound enamel specimens were exposed to severe cariogenic challenge (20% sucrose, eight times daily for 5 min each time), whereas the predemineralized specimens were not. Eleven subjects were able to finish all experimental phases. The enamel alterations were quantified by surface hardness and transversal microradiography. Demineralization of previously sound enamel was reduced by all test formulations except for the NaF solution, while both TiF4 formulations were as effective as NaF varnish. For the predemineralized specimens, enamel surface hardness was increased only by TiF4 formulations, while subsurface mineral remineralization could not be seen in any group. Within the experimental protocol, TiF4 was able to decrease enamel demineralization to a similar degree as NaF varnish under severe cariogenic challenges, while only TiF4 formulations remineralized the enamel surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Stimulation of salivary flow is considered a preventive strategy for dental erosion. Alternatively, products containing calcium phosphate, such as a complex of casein phosphopeptide–amorphous calcium phosphate (CPP–ACP), have also been tested against dental erosion. Therefore, this in situ study analyzed the effect of chewing gum containing CPP–ACP on the mineral precipitation of initial bovine enamel erosion lesions. Methods: Twelve healthy adult subjects wore palatal appliances with two eroded bovine enamel samples. The erosion lesions were produced by immersion in 0.1% citric acid (pH 2.5) for 7 min. During three experimental crossover in situ phases (1 day each), the subjects chewed a type of gum, 3 times for 30 min, in each phase: with CPP–ACP (trident total), without CPP–ACP (trident), and no chewing gum (control). The Knoop surface microhardness was measured at baseline, after erosion in vitro and the mineral precipitation in situ. The differences in the degree of mineral precipitation were analyzed using repeated measures (RM-) ANOVA and post hoc Tukey’s test ( p < 0.05). Results: Significant differences were found among the remineralizing treatments ( p < 0.0001). Chewing gum (19% of microhardness recovery) improved the mineral precipitation compared to control (10%) and the addition of CPP–ACP into the gum promoted the best mineral precipitation effect (30%). Conclusions: Under this protocol, CPP–ACP chewing gum improved the mineral precipitation of eroded enamel. Clinical significance: Since the prevalence of dental erosion is steadily increasing, CPP–ACP chewing gum might be an important strategy to reduce th eprogression of initial erosion lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The LA-MC-ICP-MS method applied to U-Pb in situ dating is still rapidly evolving due to improvements in both lasers and ICP-MS. To test the validity and reproducibility of the method, 5 different zircon samples, including the standard Temora-2, ranging in age between 2.2 Ga and 246 Ma, were dated using both LA-MC-ICP-MS and SHRIMP. The selected zircons were dated by SHRIMP and, after gentle polishing, the laser spot was driven to the same site or on the same zircon phase with a 213 nm laser microprobe coupled to a multi-collector mixed system. The data were collected with a routine spot size of 25 μm and, in some cases, of 15 and 40 μm. A careful cross-calibration using a diluted U-Th-Pb solution to calculate the Faraday reading to counting rate conversion factors and the highly suitable GJ-1 standard zircon for external calibrations were of paramount importance for obtaining reliable results. All age results were concordant within the experimental errors. The assigned age errors using the LA-MC-ICP-MS technique were, in most cases, higher than those obtained by SHRIMP, but if we are not faced with a high resolution stratigraphy, the laser technique has certain advantages.