4 resultados para in situ analysis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper presents the development of a procedure, which enables the analysis of nine pharmaceutical drugs in wastewater using gas chromatography-mass spectrometry (GC-MS) associated with solid-phase microextraction (SPME) for the sample preparation. Experimental design was applied to optimize the in situ derivatization and the SPME extraction conditions. Ethyl chloroformate (ECF) was employed as derivatizing agent and polydimethylsiloxane-divinylbenzene (PDMS-DVB) as the SPME fiber coating. A fractional factorial design was used to evaluate the main factors for the in situ derivatization and SPME extraction. Thereafter, a Doehlert matrix design was applied to find out the best experimental conditions. The method presented a linear range from 0.5 to 10 mu g/L, and the intraday and interday precision were lower than 16%. Applicability of the method was verified from real influent and effluent samples of a wastewater treatment plant, as well as from samples of an industry wastewater and a river.
Resumo:
This paper presents laboratory and in situ studies carried out on a 200 000 m(3) large clayey silt compacted embankment. Laboratory studies carried out on undeformed block samples included index tests, strength tests and water retention curves using the filter paper technique. Grain size analyses with and without a deflocculating agent clearly showed the existence of grain clusters, which appear to be naturally formed. Field instrumentation installed at depths from 0.25 m to 1.0 m included tensiometers, equitensiometers, time domain reflectometry and geothermometers. Pluviometer data from a nearby weather station are also used to analyse the field data. The ranges of water content and suction values were measured, both of which correlated well with the pluviometer data. The water retention curves including laboratory and field data showed a bimodal shape, consistent with the presence of microand macropores shown in the grain size analysis.
Resumo:
Nowadays, the attainment of microsystems that integrate most of the stages involved in an analytical process has raised an enormous interest in several research fields. This approach provides experimental set-ups of increased robustness and reliability, which simplify their application to in-line and continuous biomedical and environmental monitoring. In this work, a novel, compact and autonomous microanalyzer aimed at multiwavelength colorimetric determinations is presented. It integrates the microfluidics (a three-dimensional mixer and a 25 mm length "Z-shape" optical flow-cell), a highly versatile multiwavelength optical detection system and the associated electronics for signal processing and drive, all in the same device. The flexibility provided by its design allows the microanalyzer to be operated either in single fixed mode to provide a dedicated photometer or in multiple wavelength mode to obtain discrete pseudospectra. To increase its reliability, automate its operation and allow it to work under unattended conditions, a multicommutation sub-system was developed and integrated with the experimental set-up. The device was initially evaluated in the absence of chemical reactions using four acidochromic dyes and later applied to determine some key environmental parameters such as phenol index, chromium(VI) and nitrite ions. Results were comparable with those obtained with commercial instrumentation and allowed to demonstrate the versatility of the proposed microanalyzer as an autonomous and portable device able to be applied to other analytical methodologies based on colorimetric determinations.
Resumo:
This study compared dentine demineralization induced by in vitro and in situ models, and correlated dentine surface hardness (SH), cross-sectional hardness (CSH) and mineral content by transverse microradiography (TMR). Bovine dentine specimens (n = 15/group) were demineralized in vitro with the following: MC gel (6% carboxymethylcellulose gel and 0.1 m lactic acid, pH 5.0, 14 days); buffer I (0.05 m acetic acid solution with calcium, phosphate and fluoride, pH 4.5, 7 days); buffer II (0.05 m acetic acid solution with calcium and phosphate, pH 5.0, 7 days), and TEMDP (0.05 m lactic acid with calcium, phosphate and tetraethyl methyl diphosphonate, pH 5.0, 7 days). In an in situ study, 11 volunteers wore palatal appliances containing 2 bovine dentine specimens, protected with a plastic mesh to allow biofilm development. The volunteers dripped a 20% sucrose solution on each specimen 4 times a day for 14 days. In vitro and in situ lesions were analyzed using TMR and statistically compared by ANOVA. TMR and CSH/SH were submitted to regression and correlation analysis (p < 0.05). The in situ model produced a deep lesion with a high R value, but with a thin surface layer. Regarding the in vitro models, MC gel produced only a shallow lesion, while buffers I and II as well as TEMDP induced a pronounced subsurface lesion with deep demineralization. The relationship between CSH and TMR was weak and not linear. The artificial dentine carious lesions induced by the different models differed significantly, which in turn might influence further de- and remineralization processes. Hardness analysis should not be interpreted with respect to dentine mineral loss