3 resultados para impaired effect of hydroxyurea
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The rapid (2 min) nongenomic effects of aldosterone (ALDO) and/or spironolactone (MR antagonist), RU 486 (GR antagonist), atrial natriuretic peptide (ANP) and dimethyl-BAPTA (BAPTA) on the intracellular pH recovery rate (pHirr) via NHE1 (basolateral Na+/H+ exchanger isoform), after the acid load induced by NH4Cl, and on the cytosolic free calcium concentration ([Ca2+](i)) were investigated in the proximal S3 segment isolated from rats, by the probes BCECF-AM and FLUO-4-AM, respectively. The basal pHi was 7.15+/-0.008 and the basal pHirr was 0.195+/-0.012 pH units/min (number of tubules/number of tubular areas = 16/96). Our results confirmed the rapid biphasic effect of ALDO on NHE1: ALDO (10(-12) M) increases the pHirr to approximately 59% of control value, and ALDO (10(-6)M) decreases it to approximately 49%. Spironolactone did not change these effects, but RU 486 inhibited the stimulatory effect and maintained the inhibitory effect. ANP (10(-6) M) or BAPTA (5 x 10(-5) M) alone had no significant effect on NHE1 but prevented both effects of ALDO on this exchanger. The basal [Ca2+](i) was 104+/-3 nM (15), and ALDO (10(-12) or 10(-6) M) increased the basal [Ca2+](i) to approximately 50% or 124%, respectively. RU 486, ANP and BAPTA decreased the [Ca2+](i) and inhibited the stimulatory effect of both doses of ALDO. The results suggest the involvement of GR on the nongenomic effects of ALDO and indicate a pHirr-regulating role for [Ca2+](i) that is mediated by NHE1, stimulated/impaired by ALDO, and affected by ANP or BAPTA with ALDO. The observed nongenomic hormonal interaction in the S3 segment may represent a rapid and physiologically relevant regulatory mechanism in the intact animal under conditions of volume alterations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Abuse of cocaine and androgenic-anabolic steroids has become a serious public health problem. Despite reports of an increase in the incidence of simultaneous illicit use of these substances, potential toxic interactions between cocaine and androgenic-anabolic steroids in the cardiovascular system are unknown. In the present study, we investigated the effect of single or combined administration of testosterone and cocaine for 1 or 10 consecutive days on basal cardiovascular parameters, baroreflex activity, and hemodynamic responses to vasoactive agents in unanesthetized rats. Ten-day combined administration of testosterone and cocaine increased baseline arterial pressure. Changes in arterial pressure were associated with altered baroreflex activity and impairment of both hypotensive response to intravenous sodium nitroprusside and pressor effect of intravenous phenylephrine. Chronic single administration of either testosterone or cocaine did not affect baseline arterial pressure. However, testosterone-treated animals presented rest bradycardia, cardiac hypertrophy, alterations in baroreflex activity, and enhanced response to sodium nitroprusside. Repeated administration of cocaine affected baroreflex activity and impaired vascular responsiveness to both sodium nitroprusside and phenylephrine. One-day single or combined administration of the drugs did not affect any parameter investigated. In conclusion, the present results suggest a potential interaction between toxic effects of cocaine and testosterone on the cardiovascular activity. Changes in baseline arterial pressure after combined administration of these 2 drugs may result from alterations in baroreflex activity and impairment of vascular responsiveness to vasoactive agents.
Resumo:
OBJECTIVES: The clinical significance of ischemia/reperfusion of the lower extremities demands further investigation to enable the development of more effective therapeutic alternatives. This study investigated the changes in the vascular reactivity of the rabbit femoral artery and nitric oxide metabolites under partial ischemia/reperfusion conditions following cilostazol administration. METHODS: Ischemia was induced using infrarenal aortic clamping. The animals were randomly divided into seven groups: Control 90 minutes, Ischemia/Reperfusion 90/60 minutes, Control 120 minutes, Ischemia/Reperfusion 120/90 minutes, Cilostazol, Cilostazol before Ischemia/Reperfusion 120/90 minutes, and Ischemia 120 minutes/Cilostazol/Reperfusion 90 minutes. Dose-response curves for sodium nitroprusside, acetylcholine, and the calcium ionophore A23187 were obtained in isolated femoral arteries. The levels of nitrites and nitrates in the plasma and skeletal muscle were determined using chemiluminescence. RESULTS: Acetylcholine- and A23187-induced relaxation was reduced in the Ischemia/Reperfusion 120/90 group, and treatment with cilostazol partially prevented this ischemia/reperfusion-induced endothelium impairment. Only cilostazol treatment increased plasma levels of nitrites and nitrates. An elevation in the levels of nitrites and nitrates was observed in muscle tissues in the Ischemia/Reperfusion 120/90, Cilostazol/Ischemia/Reperfusion, and Ischemia/Cilostazol/Reperfusion groups. CONCLUSION: Hind limb ischemia/reperfusion yielded an impaired endothelium-dependent relaxation of the femoral artery. Furthermore, cilostazol administration prior to ischemia exerted a protective effect on endothelium-dependent vascular reactivity under ischemia/reperfusion conditions.