4 resultados para hypertriglyceridemia
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Jun JC, Shin MK, Yao Q, Bevans-Fonti S, Poole J, Drager LF, Polotsky VY. Acute hypoxia induces hypertriglyceridemia by decreasing plasma triglyceride clearance in mice. Am J Physiol Endocrinol Metab 303: E377-E388, 2012. First published May 22, 2012; doi:10.1152/ajpendo.00641.2011.-Obstructive sleep apnea (OSA) induces intermittent hypoxia (IH) during sleep and is associated with elevated triglycerides (TG). We previously demonstrated that mice exposed to chronic IH develop elevated TG. We now hypothesize that a single exposure to acute hypoxia also increases TG due to the stimulation of free fatty acid (FFA) mobilization from white adipose tissue (WAT), resulting in increased hepatic TG synthesis and secretion. Male C57BL6/J mice were exposed to FiO(2) = 0.21, 0.17, 0.14, 0.10, or 0.07 for 6 h followed by assessment of plasma and liver TG, glucose, FFA, ketones, glycerol, and catecholamines. Hypoxia dose-dependently increased plasma TG, with levels peaking at FiO(2) = 0.07. Hepatic TG levels also increased with hypoxia, peaking at FiO(2) = 0.10. Plasma catecholamines also increased inversely with FiO(2). Plasma ketones, glycerol, and FFA levels were more variable, with different degrees of hypoxia inducing WAT lipolysis and ketosis. FiO(2) = 0.10 exposure stimulated WAT lipolysis but decreased the rate of hepatic TG secretion. This degree of hypoxia rapidly and reversibly delayed TG clearance while decreasing [H-3]triolein-labeled Intralipid uptake in brown adipose tissue and WAT. Hypoxia decreased adipose tissue lipoprotein lipase (LPL) activity in brown adipose tissue and WAT. In addition, hypoxia decreased the transcription of LPL, peroxisome proliferator-activated receptor-gamma, and fatty acid transporter CD36. We conclude that acute hypoxia increases plasma TG due to decreased tissue uptake, not increased hepatic TG secretion.
Resumo:
OBJECTIVE: To identify the prevalence of ischemic heart disease (IHD) and correlates in an adult population. METHODS: Cross-sectional population-based epidemiological study including a weighted sample of 2,471 adults of both sexes and with age 30 years or older residing in Ribeirao Preto, Southeastern Brazil, in 2007. The Rose Questionnaire was administered, and IHD prevalence was calculated with point estimates and 95% confidence intervals. To identify correlates (sociodemographic, cardiovascular risk factors, and those related to access to health services and to physical activity level), crude and adjusted prevalence ratios were estimated using Poisson regression. RESULTS: IHD prevalence was higher in females than males at all age strata. In the final model, the following variables were independently associated with IHD: work status (PR = 0.54 [0.37; 0.78]); family history of IHD (PR = 1.55 [1.12;2.13]); hypertension (PR = 1.70 [1.18;2.46]); self-reported health status (PR=2.15 [1.40;3.31]); smoking duration (third tertile) (PR=1.73 [1.08;2.76]); adjusted waist circumference (PR=1.79 [1.21;2.65]) and hypertriglyceridemia (PR=1.48 [1.05;2.10]). Linear trend test of PR across self-reported health status categories was statistically significant (p<0.05). CONCLUSIONS: A high prevalence of IHD was found, and the factors associated with the outcome are almost all modifiable and potentially influenced by public policy interventions.
Resumo:
Brown adipose tissue (BAT) is predominantly regulated by the sympathetic nervous system (SNS) and the adrenergic receptor signaling pathway. Knowing that a mouse with triple beta-receptor knockout (KO) is cold intolerant and obese, we evaluated the independent role played by the beta(1) isoform in energy homeostasis. First, the 30 min i.v. infusion of norepinephrine (NE) or the beta(1) selective agonist dobutamine (DB) resulted in similar interscapular BAT (iBAT) thermal response in WT mice. Secondly, mice with targeted disruption of the beta(1) gene (KO of beta(1) adrenergic receptor (beta 1KO)) developed hypothermia during cold exposure and exhibited decreased iBAT thermal response to NE or DB infusion. Thirdly, when placed on a high-fat diet (HFD; 40% fat) for 5 weeks, beta 1KO mice were more susceptible to obesity than WT controls and failed to develop diet-induced thermogenesis as assessed by BAT Ucp1 mRNA levels and oxygen consumption. Furthermore, beta 1KO mice exhibited fasting hyperglycemia and more intense glucose intolerance, hypercholesterolemia, and hypertriglyceridemia when placed on the HFD, developing marked non-alcoholic steatohepatitis. In conclusion, the beta(1) signaling pathway mediates most of the SNS stimulation of adaptive thermogenesis. Journal of Endocrinology (2012) 214, 359-365
Resumo:
Background We have previously demonstrated that increased rates of superoxide generation by extra-mitochondrial enzymes induce the activation of the mitochondrial ATP-sensitive potassium channel (mitoKATP) in the livers of hypertriglyceridemic (HTG) mice. The resulting mild uncoupling mediated by mitoKATP protects mitochondria against oxidative damage. In this study, we investigate whether immune cells from HTG mice also present increased mitoKATP activity and evaluate the influence of this trait on cell redox state and viability. Methods Oxygen consumption (Clark-type electrode), reactive oxygen species production (dihydroethidium and H2-DCF-DA probes) and cell death (annexin V, cytocrome c release and Trypan blue exclusion) were determined in spleen mononuclear cells. Results HTG mice mononuclear cells displayed increased mitoKATP activity, as evidenced by higher resting respiration rates that were sensitive to mitoKATP antagonists. Whole cell superoxide production and apoptosis rates were increased in HTG cells. Inhibition of mitoKATP further increased the production of reactive oxygen species and apoptosis in these cells. Incubation with HTG serum induced apoptosis more strongly in WT cells than in HTG mononuclear cells. Cytochrome c release into the cytosol and caspase 8 activity were both increased in HTG cells, indicating that cell death signaling starts upstream of the mitochondria but does involve this organelle. Accordingly, a reduced number of blood circulating lymphocytes was found in HTG mice. Conclusions These results demonstrate that spleen mononuclear cells from hyperlipidemic mice have more active mitoKATP channels, which downregulate mitochondrial superoxide generation. The increased apoptosis rate observed in these cells is exacerbated by closing the mitoKATP channels. Thus, mitoKATP opening acts as a protective mechanism that reduces cell death induced by hyperlipidemia.