4 resultados para hydrodynamic analysis

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models of the filtration phenomenon describe the mass balance in bed filtration in terms of particle removal mechanisms, and allow for the determination of global particle removal efficiencies. These models are defined in terms of the geometry and characteristic elements of granule collectors, particles and fluid, and also the composition of the balance of forces that act in the particle collector system. This work analyzes particles collection efficiency comparing downflow and upflow direct filtration, taking into account the contribution of the gravitational factor of the settling removal efficiency in future proposal of initial collection efficiency models for upflow filtration. A qualitative analysis is also made of the proposal for the collection efficiency models for particle removal in direct downflow and upflow filtration using a Computational Fluid Dynamics (CFD) tool. This analysis showed a strong influence of gravitational factor in initial collection efficiency (t = 0) of particles, as well as the reasons of their values to be smaller for upflow filtration in comparison with the downflow filtration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to use GIS integration data to characterize sedimentary processes in a SubTropical lagoon environment. The study area was the Canan,ia Inlet estuary in the southeastern section of the Canan,ia Lagoon Estuarine System (CLES), state of So Paulo, Brazil (25A degrees 03'S/47A degrees 53'W). The area is formed by the confluence of two estuarine channels forming a bay-shaped water body locally called "Trapand, Bay". The region is surrounded by one of the most preserved tracts of Atlantic Rain Forest in Southwestern Brazil and presents well-developed mangroves and marshes. In this study a methodology was developed using integrated a GIS database based on bottom sediment parameters, geomorphological data, remote sensing images, Hidrodynamical Modeling data and geophysical parameters. The sediment grain size parameters and the bottom morphology of the lagoon were also used to develop models of net sediment transport pathways. It was possible to observe that the sediment transport vectors based on the grain size model had a good correlation with the transport model based on the bottom topography features and Hydrodynamic model, especially in areas with stronger energetic conditions, with a minor contribution of finer sediments. This relation is somewhat less evident near shallower banks and depositional features. In these regions the organic matter contents in the sediments was a good complementary tool for inferring the hydrodynamic and depositional conditions (i.e. primary productivity, sedimentation rates, sources, oxi-reduction rates).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of hydrodynamic coefficients of full scale underwater vehicles using system identification (SI) is an extremely powerful technique. The procedure is based on experimental runs and on the analysis of on-board sensors and thrusters signals. The technique is cost effective and it has high repeatability; however, for open-frame underwater vehicles, it lacks accuracy due to the sensors' noise and the poor modeling of thruster-hull and thruster-thruster interaction effects. In this work, forced oscillation tests were undertaken with a full scale open-frame underwater vehicle. These conducted tests are unique in the sense that there are not many examples in the literature taking advantage of a PMM installation for testing a prototype and; consequently, allowing the comparison between the experimental results and the ones estimated by parameter identification. The Morison's equation inertia and drag coefficients were estimated with two parameter identification methods, that is, the weighted and the ordinary least-squares procedures. It was verified that the in-line force estimated from Morison's equation agrees well with the measured one except in the region around the motion inversion points. On the other hand, the error analysis showed that the ordinary least-squares provided better accuracy and, therefore, was used to evaluate the ratio between inertia and drag forces for a range of Keulegan-Carpenter and Reynolds numbers. It was concluded that, although both experimental and estimation techniques proved to be powerful tools for evaluation of an open-frame underwater vehicle's hydrodynamic coefficients, the research provided a rich amount of reference data for comparison with reduced models as well as for dynamic motion simulation of ROVs. [DOI: 10.1115/1.4004952]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the de- termination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the k –ω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle’s autopilot system.