3 resultados para hybrid state estimator
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Vanadium oxide nanotubes (NTs) were synthesized by the sol-gel method followed by a long-term hydrothermal treatment. The obtained nanotubes have a multiwall structure, and 70% of vanadium ions are in the V4+ state. This percentage was derived by evaluating three components of the magnetic susceptibility; namely, (i) the paramagnetic Curie-Weiss behavior, (ii) antiferromagnetic dimers, and (iii) magnetic trimers. The as-made NTs were annealed in situ in the cavity of the electron paramagnetic resonance (EPR) spectrometer. The line shape changes irreversibly at 390 K, and the EPR susceptibility presents an anomaly at 425 K. These changes are interpreted as a partial oxidation of the V4+ ions and consequently a decrease in the concentration of the magnetic species. The quantification of the V4+ ions of the annealed NTs reveals a diminution to 39% of V4+, a weakening of the Curie-Weiss and antiferromagnetic dimers contributions, and the suppression of magnetic trimers. Vibrational studies confirm the decrease of V4+ amount. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4749417]
Resumo:
The physical properties of small rhodium clusters, Rh-n, have been in debate due to the shortcomings of density functional theory (DFT). To help in the solution of those problems, we obtained a set of putative lowest energy structures for small Rh-n (n = 2-15) clusters employing hybrid-DFT and the generalized gradient approximation (GGA). For n = 2-6, both hybrid and GGA functionals yield similar ground-state structures (compact), however, hybrid favors compact structures for n = 7-15, while GGA favors open structures based on simple cubic motifs. Thus, experimental results are crucial to indicate the correct ground-state structures, however, we found that a unique set of structures (compact or open) is unable to explain all available experimental data. For example, the GGA structures (open) yield total magnetic moments in excellent agreement with experimental data, while hybrid structures (compact) have larger magnetic moments compared with experiments due to the increased localization of the 4d states. Thus, we would conclude that GGA provides a better description of the Rh-n clusters, however, a recent experimental-theoretical study [ Harding et al., J. Chem. Phys. 133, 214304 (2010)] found that only compact structures are able to explain experimental vibrational data, while open structures cannot. Therefore, it indicates that the study of Rh-n clusters is a challenging problem and further experimental studies are required to help in the solution of this conundrum, as well as a better description of the exchange and correlation effects on the Rh n clusters using theoretical methods such as the quantum Monte Carlo method.
Resumo:
We measured the mixing ratios of NO, NO2, O-3, and volatile organic carbon as well as the aerosol light-scattering coefficient on a boat platform cruising on rivers downwind of the city of Manaus (Amazonas State, Brazil) in July 2001 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia-Cooperative LBA Airborne Regional Experiment-2001). The dispersion and impact of the Manaus plume was investigated by a combined analysis of ground-based (boat platform) and airborne trace gas and aerosol measurements as well as by meteorological measurements complemented by dispersion calculations (Hybrid Single-Particle Lagrangian Integrated Trajectory model). For the cases with the least anthropogenic influence (including a location in a so far unexplored region similar to 150 km west of Manaus on the Rio Manacapuru), the aerosol scattering coefficient, sigma(s), was below 11 Mm(-1), NOx mixing ratios remained below 0.6 ppb, daytime O-3 mixing ratios were mostly below 20 ppb and maximal isoprene mixing ratios were about 3 ppb in the afternoon. The photostationary state (PSS) was not established for these cases, as indicated by values of the Leighton ratio, Phi, well above unity. Due to the influence of river breeze systems and other thermally driven mesoscale circulations, a change of the synoptic wind direction from east-northeast to south-southeast in the afternoon often caused a substantial increase of ss and trace gas mixing ratios (about threefold for sigma(s), fivefold for NOx, and twofold for O-3), which was associated with the arrival of the Manaus pollution plume at the boat location. The ratio F reached unity within its uncertainty range at NOx mixing ratios of about 3 ppb, indicating "steady-state" conditions in cases when radiation variations, dry deposition, emissions, and reactions mostly involving peroxy radicals (XO2) played a minor role. The median midday/afternoon XO2 mixing ratios estimated using the PSS method range from 90 to 120 parts per trillion (ppt) for the remote cases (sigma(s) < 11 Mm(-1) and NOx < 0.6 ppb), while for the polluted cases our estimates are 15 to 60 ppt. These values are within the range of XO2 estimated by an atmospheric chemistry box model (Chemistry As A Box model Application-Module Efficiently Calculating the Chemistry of the Atmosphere (CAABA/MECCA)-3.0).