28 resultados para historical of malaria
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background The development of protective immunity against malaria is slow and to be maintained, it requires exposure to multiple antigenic variants of malaria parasites and age-associated maturation of the immune system. Evidence that the protective immunity is associated with different classes and subclasses of antibodies reveals the importance of considering the quality of the response. In this study, we have evaluated the humoral immune response against Plasmodium falciparum blood stages of individuals naturally exposed to malaria who live in endemic areas of Brazil in order to assess the prevalence of different specific isotypes and their association with different malaria clinical expressions. Methods Different isotypes against P. falciparum blood stages, IgG, IgG1, IgG2, IgG3, IgG4, IgM, IgE and IgA, were determined by ELISA. The results were based on the analysis of different clinical expressions of malaria (complicated, uncomplicated and asymptomatic) and factors related to prior malaria exposure such as age and the number of previous clinical malaria attacks. The occurrence of the H131 polymorphism of the FcγIIA receptor was also investigated in part of the studied population. Results The highest levels of IgG, IgG1, IgG2 and IgG3 antibodies were observed in individuals with asymptomatic and uncomplicated malaria, while highest levels of IgG4, IgE and IgM antibodies were predominant among individuals with complicated malaria. Individuals reporting more than five previous clinical malaria attacks presented a predominance of IgG1, IgG2 and IgG3 antibodies, while IgM, IgA and IgE antibodies predominated among individuals reporting five or less previous clinical malaria attacks. Among individuals with uncomplicated and asymptomatic malaria, there was a predominance of high-avidity IgG, IgG1, IgG2 antibodies and low-avidity IgG3 antibodies. The H131 polymorphism was found in 44.4% of the individuals, and the highest IgG2 levels were observed among asymptomatic individuals with this allele, suggesting the protective role of IgG2 in this population. Conclusion Together, the results suggest a differential regulation in the anti-P. falciparum antibody pattern in different clinical expressions of malaria and showed that even in unstable transmission areas, protective immunity against malaria can be observed, when the appropriated antibodies are produced.
Resumo:
Background: Studies in South-East Asia have suggested that early diagnosis and treatment with artesunate (AS) and mefloquine (MQ) combination therapy may reduce the transmission of Plasmodium falciparum malaria and the progression of MQ resistance. Methods: The effectiveness of a fixed-dose combination of AS and MQ (ASMQ) in reducing malaria transmission was tested in isolated communities of the Jurua valley in the Amazon region. Priority municipalities within the Brazilian Legal Amazon area were selected according to pre-specified criteria. Routine national malaria control programmatic procedures were followed. Existing health structures were reinforced and health care workers were trained to treat with ASMQ all confirmed falciparum malaria cases that match inclusion criteria. A local pharmacovigilance structure was implemented. Incidence of malaria and hospitalizations were recorded two years before, during, and after the fixed-dose ASMQ intervention. In total, between July 2006 and December 2008, 23,845 patients received ASMQ. Two statistical modelling approaches were applied to monthly time series of P. falciparum malaria incidence rates, P. falciparum/Plasmodium vivax infection ratio, and malaria hospital admissions rates. All the time series ranged from January 2004 to December 2008, whilst the intervention period span from July 2006 to December 2008. Results: The ASMQ intervention had a highly significant impact on the mean level of each time series, adjusted for trend and season, of 0.34 (95% CI 0.20 - 0.58) for the P. falciparum malaria incidence rates, 0.67 (95% CI 0.50 - 0.89) for the P. falciparum/P. vivax infection ratio, and 0.53 (95% CI 0.41 - 0.69) for the hospital admission rates. There was also a significant change in the seasonal (or monthly) pattern of the time series before and after intervention, with the elimination of the malaria seasonal peak in the rainy months of the years following the introduction of ASMQ. No serious adverse events relating to the use of fixed-dose ASMQ were reported. Conclusions: In the remote region of the Jurua valley, the early detection of malaria by health care workers and treatment with fixed-dose ASMQ was feasible and efficacious, and significantly reduced the incidence and morbidity of P. falciparum malaria.
Resumo:
Abstract Background Serological tests to detect antibodies specific to Plasmodium vivax could be a valuable tool for epidemiological studies, for screening blood donors in areas where the malaria is not endemic and for diagnosis of infected individuals. Because P. vivax cannot be easily obtained in vitro, ELISA assays using total or semi-purified antigens are rarely used. Based on this limitation, we tested whether recombinant proteins representing the 19 kDa C-terminal region of the merozoite surface protein-1 of P. vivax (MSP119) could be useful for serological detection of malaria infection. Methods Three purified recombinant proteins produced in Escherichia coli (GST-MSP119, His6-MSP119 and His6-MSP119-PADRE) and one in Pichia pastoris (yMSP119-PADRE) were compared for their ability to bind to IgG antibodies of individuals with patent P. vivax infection. The method was tested with 200 serum samples collected from individuals living in the north of Brazil in areas endemic for malaria, 53 serum samples from individuals exposed to Plasmodium falciparum infection and 177 serum samples from individuals never exposed to malaria. Results Overall, the sensitivity of the ELISA assessed with sera from naturally infected individuals was 95%. The proportion of serum samples that reacted with recombinant proteins GST-MSP119, His6-MSP119, His6-MSP119-PADRE and yMSP119-PADRE was 90%, 93.5%, 93.5% and 93.5%, respectively. The specificity values of the ELISA determined with sera from healthy individuals and from individuals with other infectious diseases were 98.3% (GST-MSP119), 97.7% (His6-MSP119 and His6-MSP119-PADRE) or 100% (yMSP119-PADRE). Conclusions Our study demonstrated that for the Brazilian population, an ELISA using a recombinant protein of the MSP119 can be used as the basis for the development of a valuable serological assay for the detection of P. vivax malaria.
Resumo:
Abstract Background Extra-Amazonian autochthonous Plasmodium vivax infections have been reported in mountainous regions surrounded by the Atlantic Forest in Espírito Santo state, Brazil. Methods Sixty-five patients and 1,777 residents were surveyed between April 2001 and March 2004. Laboratory methods included thin and thick smears, multiplex-PCR, immunofluorescent assay (IFA) against P. vivax and Plasmodium malariae crude blood-stage antigens and enzyme-linked immunosorbent assay (ELISA) for antibodies against the P. vivax-complex (P. vivax and variants) and P. malariae/Plasmodium brasilianum circumsporozoite-protein (CSP) antigens. Results Average patient age was 35.1 years. Most (78.5%) were males; 64.6% lived in rural areas; 35.4% were farmers; and 12.3% students. There was no relevant history of travel. Ninety-five per cent of the patients were experiencing their first episode of malaria. Laboratory data from 51 patients were consistent with P. vivax infection, which was determined by thin smear. Of these samples, 48 were assayed by multiplex-PCR. Forty-five were positive for P. vivax, confirming the parasitological results, while P. malariae was detected in one sample and two gave negative results. Fifty percent of the 50 patients tested had IgG antibodies against the P. vivax-complex or P. malariae CSP as determined by ELISA. The percentages of residents with IgM and IgG antibodies detected by IFA for P. malariae, P. vivax and Plasmodium falciparum who did not complain of malaria symptoms at the time blood was collected were 30.1% and 56.5%, 6.2% and 37.7%, and 13.5% and 13%, respectively. The same sera that reacted to P. vivax also reacted to P. malariae. The following numbers of samples were positive in multiplex-PCR: 23 for P. vivax; 15 for P. malariae; 9 for P. falciparum and only one for P. falciparum and P. malariae. All thin and thick smears were negative. ELISA against CSP antigens was positive in 25.4%, 6.3%, 10.7% and 15.1% of the samples tested for "classical" P. vivax (VK210), VK247, P. vivax-like and P. malariae, respectively. Anopheline captures in the transmission area revealed only zoophilic and exophilic species. Conclusion The low incidence of malaria cases, the finding of asymptomatic inhabitants and the geographic separation of patients allied to serological and molecular results raise the possibility of the existence of a simian reservoir in these areas.
Resumo:
Abstract Background In areas with limited structure in place for microscopy diagnosis, rapid diagnostic tests (RDT) have been demonstrated to be effective. Method The cost-effectiveness of the Optimal® and thick smear microscopy was estimated and compared. Data were collected on remote areas of 12 municipalities in the Brazilian Amazon. Data sources included the National Malaria Control Programme of the Ministry of Health, the National Healthcare System reimbursement table, hospitalization records, primary data collected from the municipalities, and scientific literature. The perspective was that of the Brazilian public health system, the analytical horizon was from the start of fever until the diagnostic results provided to patient and the temporal reference was that of year 2006. The results were expressed in costs per adequately diagnosed cases in 2006 U.S. dollars. Sensitivity analysis was performed considering key model parameters. Results In the case base scenario, considering 92% and 95% sensitivity for thick smear microscopy to Plasmodium falciparum and Plasmodium vivax, respectively, and 100% specificity for both species, thick smear microscopy is more costly and more effective, with an incremental cost estimated at US$549.9 per adequately diagnosed case. In sensitivity analysis, when sensitivity and specificity of microscopy for P. vivax were 0.90 and 0.98, respectively, and when its sensitivity for P. falciparum was 0.83, the RDT was more cost-effective than microscopy. Conclusion Microscopy is more cost-effective than OptiMal® in these remote areas if high accuracy of microscopy is maintained in the field. Decision regarding use of rapid tests for diagnosis of malaria in these areas depends on current microscopy accuracy in the field.
Resumo:
Abstract Background Plasmodium vivax merozoite surface protein-1 (MSP-1) is an antigen considered to be one of the leading malaria vaccine candidates. PvMSP-1 is highly immunogenic and evidences suggest that it is target for protective immunity against asexual blood stages of malaria parasites. Thus, this study aims to evaluate the acquired cellular and antibody immune responses against PvMSP-1 in individuals naturally exposed to malaria infections in a malaria-endemic area in the north-eastern Amazon region of Brazil. Methods The study was carried out in Paragominas, Pará State, in the Brazilian Amazon. Blood samples were collected from 35 individuals with uncomplicated malaria. Peripheral blood mononuclear cells were isolated and the cellular proliferation and activation was analysed in presence of 19 kDa fragment of MSP-1 (PvMSP-119) and Plasmodium falciparum PSS1 crude antigen. Antibodies IgE, IgM, IgG and IgG subclass and the levels of TNF, IFN-γ and IL-10 were measured by enzyme-linked immunosorbent assay. Results The prevalence of activated CD4+ was greater than CD8+ T cells, in both ex-vivo and in 96 h culture in presence of PvMSP-119 and PSS1 antigen. A low proliferative response against PvMSP-119 and PSS1 crude antigen after 96 h culture was observed. High plasmatic levels of IFN-γ and IL-10 as well as lower TNF levels were also detected in malaria patients. However, in the 96 h supernatant culture, the dynamics of cytokine responses differed from those depicted on plasma assays; in presence of PvMSP-119 stimulus, higher levels of TNF were noted in supernatant 96 h culture of malaria patient’s cells while low levels of IFN-γ and IL-10 were verified. High frequency of malaria patients presenting antibodies against PvMSP-119 was evidenced, regardless class or IgG subclass.PvMSP-119-induced antibodies were predominantly on non-cytophilic subclasses. Conclusions The results presented here shows that PvMSP-119 was able to induce a high cellular activation, leading to production of TNF and emphasizes the high immunogenicity of PvMSP-119 in naturally exposed individuals and, therefore, its potential as a malaria vaccine candidate.
Resumo:
Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.
Resumo:
Objective To investigate risk factors associated with the acquisition of antibodies against Plasmodium vivax Duffy binding protein (PvDBP) a leading malaria vaccine candidate in a well-consolidated agricultural settlement of the Brazilian Amazon Region and to determine the sequence diversity of the PvDBP ligand domain (DBPII) within the local malaria parasite population. Methods Demographic, epidemiological and clinical data were collected from 541 volunteers using a structured questionnaire. Malaria parasites were detected by conventional microscopy and PCR, and blood collection was used for antibody assays and molecular characterisation of DBPII. Results The frequency of malaria infection was 7% (6% for P. vivax and 1% for P. falciparum), with malaria cases clustered near mosquito breeding sites. Nearly 50% of settlers had anti-PvDBP IgG antibodies, as detected by enzyme-linked immunosorbent assay (ELISA) with subjects age being the only strong predictor of seropositivity to PvDBP. Unexpectedly, low levels of DBPII diversity were found within the local malaria parasites, suggesting the existence of low gene flow between P. vivax populations, probably due to the relative isolation of the studied settlement. Conclusion The recognition of PvDBP by a significant proportion of the community, associated with low levels of DBPII diversity among local P. vivax, reinforces the variety of malaria transmission patterns in communities from frontier settlements. Such studies should provide baseline information for antimalarial vaccines now in development.
Resumo:
An important step when designing a vaccine is identifying the antigens that function as targets of naturally acquired antibodies. We investigated specific antibody responses against two Plasmodium vivax vaccine candidates, PvMSP-1(19) and PvMSP-3 alpha(359-798). Moreover, we assessed the relationship between these antibodies and morbidity parameters. PvMSP-1(19) was the most immunogenic antigen and the frequency of responders to this protein tended to increase in P. vivax patients with higher parasitemia. For both antigens, IgG antibody responses tended to be lower in patients who had experienced their first bout of malaria. Furthermore, anemic patients presented higher IgG antibody responses to PvMSP-3 alpha(359-798). Since the humoral response involves a number of antibodies acting simultaneously on different targets, we performed a Principal Component Analysis (PCA). Anemic patients had, on average, higher first principal component scores (IgG1/IgG2/IgG3/IgG4 anti-MSP3 alpha), which were negatively correlated with hemoglobin levels. Since antibodies against PfMSP-3 have been strongly associated with clinical protection, we cannot exclude the possibility of a dual role of PvMSP-3 specific antibodies in both immunity and pathogenesis of vivax malaria. Our results confirm the high immunogenicity of the conserved C terminus of PvMSP-1 and points to the considerable immunogenicity of polymorphic PvMSP-3 alpha(359-798) during natural infection. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Since around 1723, on the occasion of its initial colonization by Europeans, Rondonia has received successive waves of immigrants. This has been further swelled by individuals from northeastern Brazil, who began entering at the beginning of the twentieth century. The ethnic composition varies across the state according to the various sites of settlement of each wave of immigrants. We analyzed the frequency of the CCR5 Delta 32 allele of the CCR5 chemokine receptor, which is considered a Caucasian marker, in five sample sets from the population. Four were collected in Porto Velho, the state capital and the site of several waves of migration. Of these, two, from the Hospital de Base were comprised of HB Mothers and HB Newborns presenting allele frequencies of 3.5% and 3.1%, respectively, a third from the peri-urban neighborhoods of Candelaria/Bate-Estaca (1.8%), whereas a fourth, from the Research Center on Tropical Medicine/CEPEM (0.6%), was composed of malaria patients under treament. The fifth sample (3.4%) came from the inland Quilombola village of Pedras Negras. Two homozygous individuals (CCR5 Delta 32/CCR5 Delta 32) were detected among the HB Mother samples. The frequency of this allele was heterogeneous and higher where the European inflow was more pronounced. The presence of the allele in Pedras Negras revealed European miscegenation in a community largely comprising Quilombolas.
Resumo:
Introduction: Toxoplasmosis is usually a benign infection, except in the event of ocular, central nervous system (CNS), or congenital disease and particularly when the patient is immunocompromised. Treatment consists of drugs that frequently cause adverse effects; thus, newer, more effective drugs are needed. In this study, the possible activity of artesunate, a drug successfully being used for the treatment of malaria, on Toxoplasma gondii growth in cell culture is evaluated and compared with the action of drugs that are already being used against this parasite. Methods: LLC-MK2 cells were cultivated in RPMI medium, kept in disposable plastic bottles, and incubated at 36 degrees C with 5% CO2. Tachyzoites of the RH strain were used. The following drugs were tested: artesunate, cotrimoxazole, pentamidine, pyrimethamine, quinine, and trimethoprim. The effects of these drugs on tachyzoites and LLC-MK2 cells were analyzed using nonlinear regression analysis with Prism 3.0 software. Results: Artesunate showed a mean tachyzoite inhibitory concentration (IC50) of 0.075 mu M and an LLC MK2 toxicity of 2.003 mu M. Pyrimethamine was effective at an IC50 of 0.482 mu M and a toxicity of 11.178 mu M. Trimethoprim alone was effective against the in vitro parasite. Cotrimoxazole also was effective against the parasite but at higher concentrations than those observed for artesunate and pyrimethamine. Pentamidine and quinine had no inhibitory effect over tachyzoites. Conclusions: Artesunate is proven in vitro to be a useful alternative for the treatment of toxoplasmosis, implying a subsequent in vivo effect and suggesting the mechanism of this drug against the parasite.
Resumo:
Background: The activation of innate immune responses by Plasmodium vivax results in activation of effector cells and an excessive production of pro-inflammatory cytokines that may culminate in deleterious effects. Here, we examined the activation and function of neutrophils during acute episodes of malaria. Materials and Methods: Blood samples were collected from P. vivax-infected patients at admission (day 0) and 30-45 days after treatment with chloroquine and primaquine. Expression of activation markers and cytokine levels produced by highly purified monocytes and neutrophils were measured by the Cytometric Bead Assay. Phagocytic activity, superoxide production, chemotaxis and the presence of G protein-coupled receptor (GRK2) were also evaluated in neutrophils from malaria patients. Principal Findings: Both monocytes and neutrophils from P. vivax-infected patients were highly activated. While monocytes were found to be the main source of cytokines in response to TLR ligands, neutrophils showed enhanced phagocytic activity and superoxide production. Interestingly, neutrophils from the malaria patients expressed high levels of GRK2, low levels of CXCR2, and displayed impaired chemotaxis towards IL-8 (CXCL8). Conclusion: Activated neutrophils from malaria patients are a poor source of pro-inflammatory cytokines and display reduced chemotactic activity, suggesting a possible mechanism for an enhanced susceptibility to secondary bacterial infection during malaria.
Resumo:
Background: Placental malaria (PM) is one major feature of malaria during pregnancy. A murine model of experimental PM using BALB/c mice infected with Plasmodium berghei ANKA was recently established, but there is need for additional PM models with different parasite/host combinations that allow to interrogate the involvement of specific host genetic factors in the placental inflammatory response to Plasmodium infection. Methods: A mid-term infection protocol was used to test PM induction by three P. berghei parasite lines, derived from the K173, NK65 and ANKA strains of P. berghei that fail to induce experimental cerebral malaria (ECM) in the susceptible C57BL/6 mice. Parasitaemia course, pregnancy outcome and placenta pathology induced by the three parasite lines were compared. Results: The three P. berghei lines were able to evoke severe PM pathology and poor pregnancy outcome features. The results indicate that parasite components required to induce PM are distinct from ECM. Nevertheless, infection with parasites of the ANKA Delta pm4 line, which lack expression of plasmepsin 4, displayed milder disease phenotypes associated with a strong innate immune response as compared to infections with NK65 and K173 parasites. Conclusions: Infection of pregnant C57BL/6 females with K173, NK65 and ANKA Delta pm4 P. berghei parasites provide experimental systems to identify host molecular components involved in PM pathogenesis mechanisms.
Resumo:
Background: In Cambodia, malaria transmission is low and most cases occur in forested areas. Seroepidemiological techniques can be used to identify both areas of ongoing transmission and high-risk groups to be targeted by control interventions. This study utilizes repeated cross-sectional data to assess the risk of being malaria sero-positive at two consecutive time points during the rainy season and investigates who is most likely to sero-convert over the transmission season. Methods: In 2005, two cross-sectional surveys, one in the middle and the other at the end of the malaria transmission season, were carried out in two ecologically distinct regions in Cambodia. Parasitological and serological data were collected in four districts. Antibodies to Plasmodium falciparum Glutamate Rich Protein (GLURP) and Plasmodium vivax Merozoite Surface Protein-119 (MSP-119) were detected using Enzyme Linked Immunosorbent Assay (ELISA). The force of infection was estimated using a simple catalytic model fitted using maximum likelihood methods. Risks for sero-converting during the rainy season were analysed using the Classification and Regression Tree (CART) method. Results: A total of 804 individuals participating in both surveys were analysed. The overall parasite prevalence was low (4.6% and 2.0% for P. falciparum and 7.9% and 6.0% for P. vivax in August and November respectively). P. falciparum force of infection was higher in the eastern region and increased between August and November, whilst P. vivax force of infection was higher in the western region and remained similar in both surveys. In the western region, malaria transmission changed very little across the season (for both species). CART analysis for P. falciparum in the east highlighted age, ethnicity, village of residence and forest work as important predictors for malaria exposure during the rainy season. Adults were more likely to increase their antibody responses to P. falciparum during the transmission season than children, whilst members of the Charay ethnic group demonstrated the largest increases. Discussion: In areas of low transmission intensity, such as in Cambodia, the analysis of longitudinal serological data enables a sensitive evaluation of transmission dynamics. Consecutive serological surveys allow an insight into spatio-temporal patterns of malaria transmission. The use of CART enabled multiple interactions to be accounted for simultaneously and permitted risk factors for exposure to be clearly identified.
Resumo:
Evaluation of: Rodriguez D, Gonzalez-Aseguinolaza G, Rodriguez JR et al. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium. PLoS ONE 7(4), e34445 (2012). Recently, a vaccine against malaria was successfully tested in a human Phase III trial. The efficacy of this vaccine formulation, based on the Plasmodium falciparum circumsporozoite protein, was approximately 50% and correlated with the presence of antibodies specific to the infective stages of the malaria parasites. Different strategies are being pursued to improve vaccine efficacy levels. One such strategy is the induction of specific cytotoxic T cells that can destroy the intracellular hepatocyte stages of the malaria parasite. In this study, a novel vaccination protocol was developed to elicit strong immune responses mediated by CD8(+) cytotoxic cells specific to the circumsporozoite protein. As proof-of-concept, the authors used the rodent malaria Plasmodium yoelii parasite. The vaccination strategy consisted of a heterologous prime-boost vaccination regimen involving porcine parvovirus-like particles for priming and the modified vaccinia virus Ankara for the booster immunization, both of which expressed the immunodominant CD8 epitope of the P. yoelii circumsporozoite protein. Results from this experimental model were extremely meaningful. This vaccination strategy led to a significant T-cell immune response mediated by CD8(+) multifunctional T effector and effector-memory cells. However, most importantly for the malaria vaccine development was the fact that following a sporozoite challenge, immunized mice eliminated more than 97% of the malaria parasites during the hepatocyte stages. These results confirm and extend a vast body of knowledge showing that a heterologous prime-boost vaccination strategy can elicit strong CD8(+) T-cell-mediated protective immunity and may increase the efficacy of malaria vaccines.