4 resultados para higher-derivatives
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this work, we employ renormalization group methods to study the general behavior of field theories possessing anisotropic scaling in the spacetime variables. The Lorentz symmetry breaking that accompanies these models are either soft, if no higher spatial derivative is present, or it may have a more complex structure if higher spatial derivatives are also included. Both situations are discussed in models with only scalar fields and also in models with fermions as a Yukawa-like model.
Resumo:
Aims: Guided tissue regeneration (GTR) and enamel matrix derivatives (EMD) are two popular regenerative treatments for periodontal infrabony lesions. Both have been used in conjunction with other regenerative materials. We conducted a Bayesian network meta-analysis of randomized controlled trials on treatment effects of GTR, EMD and their combination therapies. Material and Methods: A systematic literature search was conducted using the Medline, EMBASE, LILACS and CENTRAL databases up to and including June 2011. Treatment outcomes were changes in probing pocket depth (PPD), clinical attachment level (CAL) and infrabony defect depth. Different types of bone grafts were treated as one group and so were barrier membranes. Results: A total of 53 studies were included in this review, and we found small differences between regenerative therapies which were non-significant statistically and clinically. GTR and GTR-related combination therapies achieved greater PPD reduction than EMD and EMD-related combination therapies. Combination therapies achieved slightly greater CAL gain than the use of EMD or GTR alone. GTR with BG achieved greatest defect fill. Conclusion: Combination therapies performed better than single therapies, but the additional benefits were small. Bayesian network meta-analysis is a promising technique to compare multiple treatments. Further analysis of methodological characteristics will be required prior to clinical recommendations.
Resumo:
Background and Objective Cutaneous and mucocutaneous leishmaniasis are diseases characterized by skin or mucosal manifestations. In the new world, Leishmania braziliensis is the main etiological agent of cutaneous leishmaniasis, condition that may evolve to the mucocutaneous form. The therapeutic arsenal routinely employed to treat infected patients is unsatisfactory, especially for pentavalent antimonials, treatment recommended by the WHO, as they are often highly toxic, poorly tolerated and of variable effectiveness. This work aimed to evaluate in vitro the effectiveness of photodynamic antimicrobial chemotherapy as a new approach for the treatment of leishmaniasis. Materials and Methods A laser (??=?660?nm, 40?mW, 4.2?J/cm2, and 8.4?J/cm2, CW) associated to phenothiazine's derivatives (5 and 10?mu g/ml, toluidine blue O, methylene blue, or phenothiazine) on the promastigote forms of L. braziliensis in a single session. Samples were removed and analyzed in a hemocytometer 72?hours after PACT and viability of the parasites was assessed in quadruplicates. Results An important decrease in the number of viable parasites on all treated groups in comparison to their controls was observed as all tested compounds lead to significant parasite lethality being the highest lethality achieved with 10?mu g/ml of TBO. No lethality was observed on groups treated with laser or with any of the compounds separately. Conclusions TBO presented higher parasite lethality in comparison to MB with impressive reduction from 1?hour to 5?minutes of pre-incubation time. Lasers Surg. Med. 44: 850855, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The efficiency of the charge-carrier photogeneration processes in poly(2,5-bis(3',7'-dimethyl-octyloxy)-1,4-phenylene vinylene) (OC(1)OC10-PPV) has been analyzed by the spectral response of the photocurrent of devices in ITO/polymer/Al structures. The symbatic response of the photocurrent action spectra of the OC1OC10-PPV devices, obtained for light-excitation through the ITO electrode and for forward bias, has been fitted using a phenomenological model which considers that the predominant transport mechanism under external applied electric field is the drift of photogenerated charge-carriers, neglecting charge-carrier diffusion. The proposed model takes into account that charge-carrier photogeneration occurs via intermediate stages of bounded pairs (excitonic states), followed by dissociation processes. Such processes result in two different contributions to the photoconductivity: The first one, associated to direct creation of unbound polaron pairs due to intrinsic photoionization; and the second one is associated to secondary processes like extrinsic photoinjection at the metallic electrodes. The results obtained from the model have shown that the intrinsic component of the photoconductivity at higher excitation energies has a considerably higher efficiency than the extrinsic one, suggesting a dependence on the photon energy for the efficiency of the photogeneration process.