8 resultados para high dimensional data, call detail records (CDR), wireless telecommunication industry
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Dimensionality reduction is employed for visual data analysis as a way to obtaining reduced spaces for high dimensional data or to mapping data directly into 2D or 3D spaces. Although techniques have evolved to improve data segregation on reduced or visual spaces, they have limited capabilities for adjusting the results according to user's knowledge. In this paper, we propose a novel approach to handling both dimensionality reduction and visualization of high dimensional data, taking into account user's input. It employs Partial Least Squares (PLS), a statistical tool to perform retrieval of latent spaces focusing on the discriminability of the data. The method employs a training set for building a highly precise model that can then be applied to a much larger data set very effectively. The reduced data set can be exhibited using various existing visualization techniques. The training data is important to code user's knowledge into the loop. However, this work also devises a strategy for calculating PLS reduced spaces when no training data is available. The approach produces increasingly precise visual mappings as the user feeds back his or her knowledge and is capable of working with small and unbalanced training sets.
Resumo:
Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.
Resumo:
The regional monsoons of the world have long been viewed as seasonal atmospheric circulation reversal-analogous to a thermally-driven land-sea breeze on a continental scale. This conventional view of monsoons is now being integrated at a global scale and accordingly, a new paradigm has emerged which considers regional monsoons to be manifestations of global-scale seasonal changes in response to overturning of atmospheric circulation in the tropics and subtropics, and henceforth, interactive components of a singular Global Monsoon (GM) system. The paleoclimate community, however, tends to view 'paleomonsoon' (PM), largely in terms of regional circulation phenomena. In the past decade, many high-quality speleothem oxygen isotope (delta O-18) records have been established from the Asian Monsoon and the South American Monsoon regions that primarily reflect changes in the integrated intensities of monsoons on orbital-to-decadal timescales. With the emergence of these high-resolution and absolute-dated records from both sides of the Equator, it is now possible to test a concept of the 'Global-Paleo-Monsoon' (GPM) on a wide-range of timescales. Here we present a comprehensive synthesis of globally-distributed speleothem delta O-18 records and highlight three aspects of the GPM that are comparable to the modern GM: (1) the GPM intensity swings on different timescales; (2) their global extent; and (3) an anti-phased inter-hemispheric relationship between the Asian and South American monsoon systems on a wide range of timescales.
Resumo:
Thermal treatment (thermal rectification) is a process in which technological properties of wood are modified using thermal energy, the result of Which is often value-added wood. Thermally treated wood takes on similar color shades to tropical woods and offers considerable resistance to destructive microorganisms and climate action, in addition to having high dimensional stability and low hygroscopicity. Wood samples of Eucalyptus grandis were subjected to various thermal treatments, as performed in presence (140 degrees C; 160 degrees C; 180 degrees C) or in absence of oxygen (160 degrees C; 180 degrees C; 200 degrees C) inside a thermal treatment chamber, and then studied as to their chemical characteristics. Increasing the maximum treatment temperatures led to a reduction in the holocellulose content of samples as a result of the degradation and volatilization of hemicelluloses, also leading to an increase in the relative lignin content. Except for glucose, all monosaccharide levels were found to decrease in samples after the thermal treatment at a maximum temperature of 200 degrees C. The thermal treatment above 160 degrees C led to increased levels of total extractives in the wood samples, probably ascribed to the emergence of low molecular weight substances as a result of thermal degradation. Overall, it was not possible to clearly determine the effect of presence or absence of oxygen in the air during thermal treatment on the chemical characteristics of the relevant wood samples.
Resumo:
This article investigates the effect of product market liberalisation on employment allowing for interactions between policies and institutions in product and labour markets. Using panel data for OECD countries over the period 19802002, we present evidence that product market deregulation is more effective at the margin when labour market regulation is high. The data also suggest that product market liberalisation may promote employment-enhancing labour market reforms.
Resumo:
Background: Low birth weight affects child growth and development, requiring the intensive use of health services. There are conversely proportional associations between prematurity and academic performance around the world. In this study we evaluated factors involved in weight and neuropsychomotor profile in one and two years old discharged from Intensive Care Units (ICU). Methods/Design: We investigated 203 children from the ICU who were followed for 24 +/- 4 months. The research was conducted by collecting data from medical records of patients in a Follow-up program. We investigated the following variables: inadequate weight at one year old; inadequate weight at two years old and a severe neurological disorder at two years old. Results: We observed increase of almost 20% in the proportion of children which weighted between the 10th and 90th percentiles and decrease of around 40% of children below the 15th percentile, from one to two years old. In almost 60% of the cases neuropsychomotor development was normal at 2 years old, less than 15% of children presented abnormal development. Variables that remained influential for clinical outcome at 1 and 2 years old were related to birth weight and gestational age, except for hypoglycemia. Neurological examination was the most influential variable for severe neurological disturbance. Conclusion: Hypoglycemia was considered a new fact to explain inadequate weight. The results, new in Brazil and difficult in terms of comparison, could be used to identify risk factors and for a better approach of newborn discharged from ICUs.
Resumo:
The aim of this study was to evaluate the immunoexpression of MMP-2, MMP-9 and CD31/microvascular density in squamous cell carcinomas of the floor of the mouth and to correlate the results with demographic, survival, clinical (TNM staging) and histopathological variables (tumor grade, perineural invasion, embolization and bone invasion). Data from medical records and diagnoses of 41 patients were reviewed. Histological sections were subjected to immunostaining using primary antibodies for human MMP-2, MMP-9 and CD31 and streptavidin-biotin-immunoperoxidase system. Histomorphometric analyses quantified positivity for MMPs (20 fields per slide, 100?points grade, ×200) and for CD31 (microvessels <50?µm in the area of the highest vascularization, 5 fields per slide, 100?points grade, ×400). Statistical design was composed by non-parametric Mann-Whitney U test (investigating the association between numerical variables and immunostainings), chi-square frequency test (in contingency tables), Fisher's exact test (when at least one expected frequency was less than 5 in 2×2 tables), Kaplan-Meier method (estimated probabilities of overall survival) and Iogrank test (comparison of survival curves), all with a significance level of 5%. There was a statistically significant correlation between immunostaining for MMP-2 and lymph node metastasis. Factors associated negatively with survival were N stage, histopathological grade, perineural invasion and immunostaining for MMP-9. There was no significant association between immunoexpression of CD31 and the other variables. The intensity of immunostaining for MMP-2 can be indicative of metastasis in lymph nodes and for MMP-9 of a lower probability of survival
Resumo:
Thermal treatment (thermal rectification) is a process in which technological properties of wood are modified using thermal energy, the result of which is often value-added wood. Thermally treated wood takes on similar color shades to tropical woods and offers considerable resistance to destructive microorganisms and climate action, in addition to having high dimensional stability and low hygroscopicity. Wood samples of Eucalyptus grandis were subjected to various thermal treatments, as performed in presence (140ºC; 160ºC; 180ºC) or in absence of oxygen (160ºC; 180ºC; 200ºC) inside a thermal treatment chamber, and then studied as to their chemical characteristics. Increasing the maximum treatment temperatures led to a reduction in the holocellulose content of samples as a result of the degradation and volatilization of hemicelluloses, also leading to an increase in the relative lignin content. Except for glucose, all monosaccharide levels were found to decrease in samples after the thermal treatment at a maximum temperature of 200ºC. The thermal treatment above 160ºC led to increased levels of total extractives in the wood samples, probably ascribed to the emergence of low molecular weight substances as a result of thermal degradation. Overall, it was not possible to clearly determine the effect of presence or absence of oxygen in the air during thermal treatment on the chemical characteristics of the relevant wood samples.