5 resultados para hamilton-Jacobi formalism

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundamental principles of mechanics were primarily conceived for constant mass systems. Since the pioneering works of Meshcherskii (see historical review in Mikhailov (Mech. Solids 10(5):32-40, 1975), efforts have been made in order to elaborate an adequate mathematical formalism for variable mass systems. This is a current research field in theoretical mechanics. In this paper, attention is focused on the derivation of the so-called 'generalized canonical equations of Hamilton' for a variable mass particle. The applied technique consists in the consideration of the mass variation process as a dissipative phenomenon. Kozlov's (Stek. Inst. Math 223:178-184, 1998) method, originally devoted to the derivation of the generalized canonical equations of Hamilton for dissipative systems, is accordingly extended to the scenario of variable mass systems. This is done by conveniently writing the flux of kinetic energy from or into the variable mass particle as a 'Rayleigh-like dissipation function'. Cayley (Proc. R Soc. Lond. 8:506-511, 1857) was the first scholar to propose such an analogy. A deeper discussion on this particular subject will be left for a future paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel mathematical approach for the calculation of near-zero energy states by solving potentials which are isospectral with the original one. For any potential, families of strictly isospectral potentials (with very different shape) having desirable and adjustable features are generated by supersymmetric isospectral formalism. The near-zero energy Efimov state in the original potential is effectively trapped in the deep well of the isospectral family and facilitates more accurate calculation of the Efimov state. Application to the first excited state in He-4 trimer is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generator coordinate method was implemented in the unrestricted Hartree-Fock formalism. Weight functions were built from Gaussian generator functions for 1s, 2s, and 2p orbitals of carbon and oxygen atoms. These weight functions show a similar behavior to those found in the generator coordinate restricted Hartree-Fock method, i.e., they are smooth, continuous, and tend to zero in the limits of integration. Moreover, the weight functions obtained are different for spin-up and spin-down electrons what is a result from spin polarization. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the system of massive Weyl fields propagating in a background matter and interacting with an external electromagnetic field. The interaction with an electromagnetic field is due to the presence of anomalous magnetic moments. To canonically quantize this system first we develop the classical field theory treatment of Weyl spinors in frames of the Hamilton formalism which accounts for the external fields. Then, on the basis of the exact solution of the wave equation for a massive Weyl field in a background matter we obtain the effective Hamiltonian for the description of spin-flavor oscillations of Majorana neutrinos in matter and a magnetic field. Finally, we incorporate in our analysis the neutrino self-interaction which is essential when the neutrino density is sufficiently high. We also discuss the applicability of our results for the studies of collective effects in spin-flavor oscillations of supernova neutrinos in a dense matter and a strong magnetic field. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct a consistent theory of a quantum massive Weyl field. We start with the formulation of the classical field theory approach for the description of massive Weyl fields. It is demonstrated that the standard Lagrange formalism cannot be applied for the studies of massive first-quantized Weyl spinors. Nevertheless we show that the classical field theory description of massive Weyl fields can be implemented in frames of the Hamilton formalism or using the extended Lagrange formalism. Then we carry out a canonical quantization of the system. The independent ways for the quantization of a massive Weyl field are discussed. We also compare our results with the previous approaches for the treatment of massive Weyl spinors. Finally the new interpretation of the Majorana condition is proposed.