8 resultados para grain refinement of magnesium alloys
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm(-3) soil), 7 soil P levels supplied as phosphite (0-100 mg P dm(-3) soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm(-3) soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability. In general, foliar sprays of phosphate did not satisfactorily improve grain yield of the common bean plants grown under low soil phosphate availability.
Resumo:
A new and simple criterion with which to quantitatively predict the glass forming ability (GFA) of metallic alloys is proposed. It was found that the critical cooling rate for glass formation (R-C) correlates well with a proper combination of two factors, the minimum topological instability (lambda(min)) and the Delta h parameter, which depends on the average work function difference (Delta phi) and the average electron density difference (Delta n(ws)(1/3)) among the constituent elements of the alloy. A correlation coefficient (R-2) of 0.76 was found between R-c and the new criterion for 68 alloys in 30 different metallic systems. The new criterion and the Uhlmann's approach were used to estimate the critical amorphous thickness (Z(C)) of alloys in the Cu-Zr system. The new criterion underestimated R-C in the Cu-Zr system, producing predicted Z(C) values larger than those observed experimentally. However, when considering a scale factor, a remarkable similarity was observed between the predicted and the experimental behavior of the GFA in the binary Cu-Zr. When using the same scale factor and performing the calculation for the ternary Zr-Cu-Al, good agreement was found between the predicted and the actual best GFA region, as well as between the expected and the observed critical amorphous thickness. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676196]
Resumo:
The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the general alloy composition. Regarding the alloys containing nickel, the Ni-Cr and Ni-Cr-Ti alloys released 0.62 mg/L of Ni on average, while the Co-Cr dental alloy released ions between 0.01 and 0.03 mg/L of Co and Cr, respectively.The open-circuit potential stabilized at a higher level with lower deviation (standard deviation: Ni-Cr-6Ti = 32 mV/SCE and Co-Cr = 54 mV/SCE). The potenciodynamic curves of the dental alloys showed that the Ni-based dental alloy with >70 wt% of Ni had a similar curve and the Co-Cr dental alloy showed a low current density and hence a high resistance to corrosion compared with the Ni-based dental alloys. Some changes in microstructure were observed and this fact influenced the corrosion behavior for the alloys. The lower corrosion resistance also led to greater release of nickel ions to the medium. The quantity of Co ions released from the Co-Cr-Mo alloy was relatively small in the solutions. In addition, the quantity of Cr ions released into the artificial saliva from the Co-Cr alloy was lower than Cr release from the Ni-based dental alloys.
Resumo:
The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.
Resumo:
The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm-3 soil), 7 soil P levels supplied as phosphite (0-100 mg P dm-3 soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm-3 soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability. In general, foliar sprays of phosphate did not satisfactorily improve grain yield of the common bean plants grown under low soil phosphate availability.
Resumo:
Studies addressing the estimation of genetic parameters in soybean have not emphasized the epistatic effects. The purpose of this study was to estimate the significance of these effects on soybean grain yield, based on the Modified Triple Test Cross design. Thirty-two inbred lines derived from a cross between two contrasting lines were used, which were crossed with two testers (L1 and L2). The experiments were carried out at two locations, in 10 x 10 triple lattice designs with 9 replications, containing 32 lines (Pi ), 64 crosses (32 Pi x L1 and 32 Pi x L2 ) and controls. The variation between ( ͞L1i + ͞L2i - ͞Pi ) revealed the presence of epistasis, as well as an interaction of epistasis x environment. Since the predominant component of epistasis in autogamous species is additive x additive (i type), we suggest postponing the selection for grain yield to later generations of inbreeding in order to exploit the beneficial effects of additive x additive epistasis.
Resumo:
This paper presents a study of the influence of particle size on the structural and dielectric properties of Pb0.85La0.15TiO3 (PLT15) ferroelectric ceramic samples. The samples were prepared with average grain size of 1.69 +/- 0.08 mu m and 146 +/- 8 nm using, respectively, conventional and spark plasma sintering techniques. A decrease in the tetragonality degree as the crystallite size decreased was explained by an internal stress caused by the existence of a large amount of grain boundaries. The local structure exhibited no significant modification and the dielectric measurements showed a diffuse phase transition and a reduction in the permittivity magnitude at T-m as the average grain size decreased. The nanostructured ceramic sample prepared at a relatively lower temperature and sintering time presented a dielectric constant value of approximately 2000 at room temperature. (c) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
OBJECTIVE: The potential influence of magnesium on exercise performance is a subject of increasing interest. Magnesium has been shown to have bronchodilatatory properties in asthma and chronic obstructive pulmonary disease patients. The aim of this study was to investigate the effects of acute magnesium IV loading on the aerobic exercise performance of stable chronic obstructive pulmonary disease patients. METHODS: Twenty male chronic obstructive pulmonary disease patients (66.2 +/- 8.3 years old, FEV1: 49.3 +/- 19.8%) received an IV infusion of 2 g of either magnesium sulfate or saline on two randomly assigned occasions approximately two days apart. Spirometry was performed both before and 45 minutes after the infusions. A symptom-limited incremental maximal cardiopulmonary test was performed on a cycle ergometer at approximately 100 minutes after the end of the infusion. ClinicalTrials.gov: NCT00500864 RESULTS: Magnesium infusion was associated with significant reductions in the functional residual capacity (-0.41 l) and residual volume (-0.47 l), the mean arterial blood pressure (-5.6 mmHg) and the cardiac double product (734.8 mmHg.bpm) at rest. Magnesium treatment led to significant increases in the maximal load reached (+8 w) and the respiratory exchange ratio (0.06) at peak exercise. The subgroup of patients who showed increases in the work load equal to or greater than 5 w also exhibited significantly greater improvements in inspiratory capacity (0.29 l). CONCLUSIONS: The acute IV loading of magnesium promotes a reduction in static lung hyperinflation and improves the exercise performance in stable chronic obstructive pulmonary disease patients. Improvements in respiratory mechanics appear to be responsible for the latter finding.