9 resultados para glycol methacrylate
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The aim of this study was to evaluate the effect of the association between bisphenol-A diglycidyl dimethacrylate (BisGMA) or its ethoxylated version (BisEMA) with diluents derived from the ethylene glycol dimethacrylate (EGDMA), with increasing number of ethylene glycol units (1: EGDMA, 2: DEGDMA, 3: TEGDMA, or 4: TETGDMA), or trimethylol propane trimethacrylate (TMPTMA) or 1,10-decanediol dimethacrylate (D3MA) on polymerization stress, volumetric shrinkage, degree of conversion, maximum rate of polymerization (Rpmax), and elastic modulus of experimental composites. BisGMA containing formulations presented lower shrinkage and stress but higher modulus and Rpmax than those containing BisEMA. TMPTMA presented the lowest stress among all diluents, as a result of lower conversion. EGDMA, DEGDMA, TEGDMA, and TETGDMA presented similar polymerization stress which was higher than the stress presented by D3MA and TMPTMA. D3MA presented similar conversion when copolymerized with both base monomers. The other diluents presented higher conversion when associated with BisEMA. EGDMA showed similar shrinkage compared with DEGDMA and higher than the other diluents. The lower conversion achieved by TMPTMA did not jeopardize its elastic modulus, similar to the other diluents. Despite the similar conversion presented by D3MA in comparison with EGDMA and DEGDMA, its lower elastic modulus may limit its use. Rather than proposing new materials, this study provides a systematic evaluation of off the shelf monomers and their effects on stress development, as highlighted by the analysis of conversion, shrinkage and modulus, to aid the optimization of commercially available materials. (c) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
The colloidal stability of poly(ethylene glycol)-decorated poly(methyl methacrylate), PMMA/Tween-20, particles was investigated by means of phase separation measurements, in the presence of sodium fluoride (NaF), sodium chloride, sodium bromide, sodium nitrate, or sodium thiocyanate (NaSCN) at 1.0 mol L-1. Following Hofmeister's series, the dispersions of PMMA/Tween-20 destabilized faster in the presence of NaF than with NaSCN. After the phase separation, the systems were homogenized and except for the dispersions in NaF, re-dispersed particles took longer to destabilize, indicating that anions adsorbed on the particles, creating a new surface. Except for F- ions, the adsorption of anions on the polar outmost shell was evidenced by means of tensiometry and small-angle X-ray scattering measurements. Fluoride ions induced the dehydration of the polar shell, without affecting the polar shell electron density, and the formation of very large aggregates. A model was proposed to explain the colloidal behavior in the presence of Hofmeister ions.
Resumo:
By means of in situ IR spectroscopy we investigate the effect of dissolved alkali cations on the electro-oxidation of ethylene glycol on platinum in alkaline media. The results revealed that the increase in the oxidation currents (Li(+) < Na(+) < K(+)) is reflected in the increase in the ratio between carbonate and oxalate produced.
Resumo:
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Duarte MAH, Alves de Aguiar K, Zeferino MA, Vivan RR, Ordinola-Zapata R, Tanomaru-Filho M, Weckwerth PH, Kuga MC. Evaluation of the propylene glycol association on some physical and chemical properties of mineral trioxide aggregate. International Endodontic Journal, 45, 565570, 2012. Abstract Aim To evaluate the influence of propylene glycol (PG) on the flowability, setting time, pH and calcium ion release of mineral trioxide aggregate (MTA). Methodology Mineral trioxide aggregate was mixed with different proportions of PG, as follows: group 1: MTA + 100% distilled water (DW); group 2: MTA + 80% DW and 20% PG; group 3: MTA + 50% DW and 50% PG; group 4: MTA + 20% DW and 80% PG; group 5: MTA + 100% PG. The ANSI/ADA No. 57 was followed for evaluating the flowability and the setting time was measured by using ASTM C266-08. For pH and calcium release analyses, 50 acrylic teeth with root-end cavities were filled with the materials (n = 10) and individually immersed in flasks containing 10 mL deionized water. After 3 h, 24 h, 72 h and 168 h, teeth were placed in new flasks and the water in which each specimen was immersed had its pH determined by a pH metre and the calcium release measured by an atomic absorption spectrophotometer with a calcium-specific hollow cathode lamp. Data were analysed by using one-way anova test for global comparison and by using Tukeys test for individual comparisons. Results The highest value of flowability was observed with MTA + 20% DW and 80% PG and the lowest values were found with MTA + 100% DW. They were significantly different compared to the other groups (P < 0.05). The presence of PG did not affect the pH and calcium release. The MTA + 100% PG favoured the highest (P < 0.05) pH and calcium release after 3 h. Increasing the PG proportion interfered (P < 0.05) with the setting time; when used at the volume of 100% setting did not occur. Conclusion The addition of PG to MTA-Angelus increased its setting time, improved flowability and increased the pH and calcium ion release during the initial post-mixing periods. The ratio of 80% DW 20% PG is recommended.
Resumo:
Purification of collagenase produced by Penicillium aurantiogriseum URM4622 was carried using a PEG/phosphate aqueous two-phase system (ATPS). A 2(3)-full experimental design was used to investigate the influence of PEG molar mass, PEG concentration and phosphate concentration on the selected responses, namely partition coefficient, activity yield and purification factor. The ATPS was composed of PEG (molar mass of 550, 1500 and 4000 g/mol) at concentrations of 15.0, 17.5 and 20.0% (w/w) and phosphate at concentrations of 12.5, 15.0 and 17.5% (w/w). The best results of one-step extraction of collagenase from the fermentation broth (partition coefficient of 1.01, activity yield of 242% and purification factor of 23.5) were obtained at pH 6.0 using 20.0% (w/w) PEG 550 and 17.5% (w/w) phosphate. The results of this preliminary study demonstrate that the selected ATPS is satisfactorily selective for the extraction of such a collagenase. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objectives: This study aimed to compare the micro-tensile bond strength of methacrylate resin systems to a silorane-based restorative system on dentin after 24 hours and six months water storage. Material and Methods: The restorative systems Adper Single Bond 2/Filtek Z350 (ASB), Clearfil SE Bond/Z350 (CF), Adper SE Plus/Z350 (ASEP) and P90 Adhesive System/Filtek P90 (P90) were applied on flat dentin surfaces of 20 third molars (n=5). The restored teeth were sectioned perpendicularly to the bonding interface to obtain sticks (0.8 mm2) to be tested after 24 hours (24 h) and 6 months (6 m) of water storage, in a universal testing machine at 0.5 mm/min. The data was analyzed via two-way Analysis of Variance/Bonferroni post hoc tests at 5% global significance. Results: Overall outcomes did not indicate a statistical difference for the resin systems (p=0.26) nor time (p=0.62). No interaction between material × time was detected (p=0.28). Mean standard-deviation in MPa at 24 h and 6 m were: ASB 31.38 (4.53) and 30.06 (1.95), CF 34.26 (3.47) and 32.75 (4.18), ASEP 29.54 (4.14) and 33.47 (2.47), P90 30.27 (2.03) and 31.34 (2.19). Conclusions: The silorane-based system showed a similar performance to methacrylate-based materials on dentin. All systems were stable in terms of bond strength up to 6 month of water storage.
Resumo:
Triblock copolymers are made of monomer segments, being the central part usually hydrophobic and the outer parts hydrophilic. By varying sizes, molecular weights and monomer types of the segments one obtains different final molecules, with different physico-chemical properties, which are directly related to the performance of the final product. Looking for new products to be used, among other possibilities, in biological applications, a new polymer (Figure 1) was synthesized by the Dow Chemical and studied by Size Exclusion Chromatography, Fourier Transformed Infrared Spectrometry, Small-angle X-ray Scattering (SAXS) and its cloud point was determined by measuring light transmittance. The studies showed low molecular polydispersivety, but different polarities in the macromolecules fractions. Due to the low solubility of Diol in water, a mixture of water/butyl diglycol was used as solvent. An extensive analysis by SAXS was performed for concentrations from 50 wt% to 80 wt% of Diol in solution. Small concentrations showed very low signal to noise ratio, making it impossible to be analysed. The scattering intensity including the form factor of polydisperse non-homogeneous spheres, and the structure factor of interacting hard spheres was fitted to the curves. As the polymer concentration is high, the fitting of form factors of direct and reverse micelles were compared. The results for direct micelles were better up to 80 wt%, whereas at 90 wt% and 95 wt% the curves were better fitted by reverse micelles. It might seem odd that direct micelles are present up to such high concentrations, but it might have been caused by the presence of butyl diglycol, which increases the solubility of Diol in water. The inner and outer radius of the micelles, electron density distribution, and interaction radius of the micelles were obtained. The polydispersivety increases with Diol concentration. Besides, the interaction radius increases with solvent concentration, even when reversed micelles are present. In the last case, accompanied by an increase of inner radius (water content), as there are fewer Diol molecules to involve the water nuclei, which become larger, further apart, and in less number.
Resumo:
In this study, Cross-Polarization Magic-angle Spinning CP/MAS, 2D Exchange, Centerband-Only Detection of Exchange (CODEX), and Separated-Local-Field (SLF) NMR experiments were used to study the molecular dynamics of poly(ethylene glycol) (PEG) inside Hectorite/PEG intercalation compounds in both single- and double-layer configurations. The results revealed that the overall amplitude of the motions of the PEG chain in the single-layer configuration is considerably smaller than that observed for the double-layer intercalation compound. This result indicates that the effect of having the polymer chain interacting with both clay platelets is to produce a substantial decrease in the motional amplitudes of those chains. The presence of these dynamically restricted segments might be explained by the presence of anchoring points between the clay platelets and the PEG oxygen atoms, which was induced by the Na+ cations. By comparing the PEG motional amplitudes of the double-layered nanocomposites composed of polymers with different molecular weights, a decrease in the motional amplitude for the smaller PEG chain was observed, which might also be understood using the presence of anchoring points.