4 resultados para gel electrolyte
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Gel Polymer Electrolytes (GPE) based on agar and containing LiClO4 have been prepared, characterized and applied to electrochromic devices. The ionic conductivity revealed the best result of 6.5 x 10(-5) S/cm for the sample with 17 wt.% of LiClO4, which increased to 5.4 x 10(-4) S/cm at 72 degrees C. TheGPE have been used in electrochromic devices (ECD) with K-glass/WO3/GPE/CeO2-TiO2/K-glass configuration. The ECD changed transmittance values up to 30% between the colored and transparent states. The charge density measurements revealed an increase of 5.5 to 7.5 mC/cm(2) from the first to 500th cycles and then a decrease to 4.4 mC/cm(2) during the next 4500 cycles. Coloration efficiency (eta) of 25 cm(2)/C was obtained.
Resumo:
Air conditioning and lighting costs can be reduced substantially by changing the optical properties of "intelligent windows." The electrochromic devices studied to date have used copper as an additive. Copper, used here as an electrochromic material, was dissolved in an aqueous animal protein-derived gel electrolyte. This combination constitutes the electrochromic system for reversible electrodeposition. Cyclic voltammetry, chronoamperometric and chromogenic analyses indicated that were obtained good conditions of transparency (initial transmittance of 70%), optical reversibility, small potential window (2.1 V), variation of transmittance in visible light (63.6%) and near infrared (20%) spectral regions. Permanence in the darkened state was achieved by maintaining a lower pulse potential (-0.16 V) than the deposition potential (-1.0 V). Increasing the number of deposition and dissolution cycles favored the transmittance and photoelectrochemical reversibility of the device. The conductivity of the electrolyte (10(-3) S/cm) at several concentrations of CuCl2 was determined by electrochemical impedance spectroscopy. A thermogravimetric analysis confirmed the good thermal stability of the electrolyte, since the mass loss detected up to 100 degrees C corresponded to water evaporation and decomposition of the gel started only at 200 degrees C. Micrographic and small angle X-ray scattering analyses indicated the formation of a persistent deposit of copper particles on the ITO. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Plasticized natural macromolecules-based polymer electrolyte samples were prepared and characterized. The plasticization of chitosonium acetate with glycerol increased the ionic conductivity value from 3.0 x 10(-7) S/cm to 1.1 x 10(-5) S/cm. The conductivity temperature relationship of the samples exhibits either VTF or Arrhenius type depending on the glycerol concentration in the sample. The dielectric studies evidencing the relaxation process in the plasticized sample at low frequency region are due to the electric polarization effect. Moreover, the samples were transparent in the Vis region, showed thermal stability up to 160 degrees C and good surface uniformity.
Resumo:
Gellan-based polymer electrolytes (PEs), doped with lithium iodide (LiI), were prepared and their electrical properties were characterized. The samples are thermally stable up to 234 degrees C and exhibit ionic conductivity of 3.8 x 10(-4) S/cm at room temperature for the sample doped with 40 wt% of LiI. Addition of 10 wt% of glycerol promotes an increase of the ionic conductivity to 1.5 x 10(-3) S/cm, which remains stable up to 100 degrees C. The activation energies of 2.4 to 12.4 kJ/mol were derived from the Arrhenius model. The repeated ionic conductivity measurements as a function of temperature show that these membranes can be reversibly used between the room temperature and 100 degrees C.