2 resultados para fracture healing

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Unstable distal femoral fractures in children are challenging lesions with restricted surgical options for adequate stabilization. Elastic nails have become popular for treating femoral shaft fractures, yet they are still challenging for using in distal fractures. The aim of this study was to test whether end caps (CAP) inserted into the nail extremity improved the mechanical stabilization of a segmental defect at the distal femoral metaphyseal-diaphyseal junction created in an artificial pediatric bone model. Methods: Two 3.5-mm titanium elastic nails (TEN) were introduced intramedullary into pediatric femur models, and a 7.0-mm-thick segmental defect was created at the distal diaphyseal-metaphyseal junction. Nondestructive 4-point bending, axial-bending, and torsion tests were conducted. After this, the end caps were inserted into the external tips of the nails and then screwed into the bone cortex. The mechanical tests were repeated. Stiffness, displacement, and torque were analyzed using the Wilcoxon nonparametric test for paired samples. Results: In the combined axial-bending tests, the TEN + CAP combination was 8.75% stiffer than nails alone (P < 0.01); in torsion tests, the TEN + CAP was 14% stiffer than nails alone (P < 0.01). In contrast, the 4-point bending test did not show differences between the methods (P = 0.91, stiffness; P = 0.51, displacement). Thus, the end caps contributed to an increase in the construct stability for torsion and axial-bending forces but not for 4-point bending forces. Conclusions: These findings indicate that end caps fitted to elastic nails may contribute to the stabilization of fractures that our model mimics (small distal fragment, bone comminution, and distal bone fragment loss).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ultrasonometric and computed-tomographic study of bone healing was undertaken using a model of a transverse mid-shaft osteotomy of sheep tibiae fixed with a semi-flexible external fixator. Fourteen sheep were operated and divided into two groups of seven according to osteotomy type, either regular or by segmental resection. The animals were killed on the 90th postoperative day and the tibiae resected for the in vitro direct contact transverse and axial measurement of ultrasound propagation velocity (UV) followed by quantitative computer-aided tomography (callus density and volume) through the osteotomy site. The intact left tibiae were used for control, being examined in a symmetrical diaphyseal segment. Regular osteotomies healed with a smaller and more mature callus than resection osteotomies. Axial UV was consistently and significantly higher (p?=?0.01) than transverse UV and both transverse and axial UV were significantly higher for the regular than for the segmental resection osteotomy. Transverse UV did not differ significantly between the intact and operated tibiae (p?=?0.20 for regular osteotomy; p?=?0.02 for resection osteotomy), but axial UV was significantly higher for the intact tibiae. Tomographic callus density was significantly higher for the regular than for the resection osteotomy and higher than both for the intact tibiae, presenting a strong positive correlation with UV. Callus volume presented an opposite behavior, with a negative correlation with UV. We conclude that UV is at least as precise as quantitative tomography for providing information about the healing state of both regular and resection osteotomy. (C) 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:10761082, 2012